1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
|
# Owner(s): ["oncall: distributed"]
import itertools
import math
import sys
from copy import deepcopy
import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import CPUOffload
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import MixedPrecision
from torch.distributed.fsdp.flat_param import FlatParamHandle
from torch.distributed.fsdp.wrap import enable_wrap, wrap
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
DeterministicModel,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
)
from torch.testing._internal.common_utils import (
TEST_WITH_DEV_DBG_ASAN,
instantiate_parametrized_tests,
parametrize,
run_tests,
)
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip dev-asan as torch + multiprocessing spawn have known issues",
file=sys.stderr,
)
sys.exit(0)
def _run_test_summon_full_param_writeback(
cls, writeback, modify_outer, *fsdp_args, **fsdp_kwargs
):
with enable_wrap(wrapper_cls=FSDP, *fsdp_args, **fsdp_kwargs):
lin1 = wrap(nn.Linear(5, 5, bias=False).cuda(cls.rank))
lin2 = nn.Linear(5, 3, bias=False).cuda(cls.rank)
model = wrap(nn.Sequential(lin1, lin2))
# set the value
outer_param = model.get_parameter("_fsdp_wrapped_module.flat_param")
inner_param = model.get_parameter(
"_fsdp_wrapped_module._fpw_module.0._fsdp_wrapped_module.flat_param"
)
p = outer_param if modify_outer else inner_param
with torch.no_grad():
# This sets the local shard value
p[0] = cls.rank + 2
with model.summon_full_params(model, writeback=writeback):
with torch.no_grad():
p.copy_(torch.zeros_like(p))
if writeback or cls.world_size == 1:
# When world_size = 1, FSDP does not shard and parameter is not set to
# a local shard, so write is always reflected.
cls.assertEqual(p.cpu()[0], 0)
else:
cls.assertEqual(p.cpu()[0], cls.rank + 2)
class TestSummonFullParamsNoShard(FSDPTest):
@property
def world_size(self):
return 1 # does not shard
@skip_if_lt_x_gpu(2)
@parametrize("writeback", [True, False])
@parametrize("modify_outer", [True, False])
@parametrize("mixed_precision", [True, False])
# TODO: CPUOffload summon + writeback does not
# work when param is not sharded
# (currently when world_size == 1)
def test_summon_full_param_writeback(
self, writeback, modify_outer, mixed_precision
):
mixed_precision = MixedPrecision(param_dtype=torch.float16) if mixed_precision else None
return _run_test_summon_full_param_writeback(
self,
writeback,
modify_outer=modify_outer,
cpu_offload=CPUOffload(offload_params=False),
mixed_precision=mixed_precision,
)
class TestSummonFullParams(FSDPTest):
@property
def world_size(self):
return 2
def get_model_param_count(self, m):
return sum([p.numel() for p in m.parameters()])
# padding ensures that all shards have the same size with the least amount of padding
def get_expected_sharded_size(self, global_size):
return int(math.ceil(global_size / self.world_size))
@skip_if_lt_x_gpu(2)
@parametrize("writeback", [True, False])
@parametrize(
"cpu_offload",
[CPUOffload(offload_params=True), CPUOffload(offload_params=False)],
)
@parametrize("mixed_precision", [True, False])
@parametrize("modify_outer", [True, False])
def test_summon_full_param_writeback(
self, writeback, cpu_offload, mixed_precision, modify_outer
):
mixed_precision = MixedPrecision(param_dtype=torch.float16) if mixed_precision else None
return _run_test_summon_full_param_writeback(
self,
writeback,
modify_outer,
cpu_offload=cpu_offload,
mixed_precision=mixed_precision,
)
@skip_if_lt_x_gpu(2)
@parametrize("mixed_precision", [True, False])
def test_summon_full_param_shard_value(self, mixed_precision):
mixed_precision = MixedPrecision(param_dtype=torch.float16) if mixed_precision else None
raw_model = nn.Linear(10, 11)
raw_model_size = self.get_model_param_count(raw_model)
expected_shard_size = self.get_expected_sharded_size(raw_model_size)
model = FSDP(raw_model.cuda(self.rank), mixed_precision=mixed_precision)
self.assertEqual(expected_shard_size, self.get_model_param_count(model))
# we're assuming a single flattened param
self.assertEqual(1, len(list(model.parameters())))
my_shard = torch.clone(next(model.parameters()))
with model.summon_full_params(model):
self.assertEqual(raw_model_size, self.get_model_param_count(model))
parameters = list(model.parameters())
all_shards = FlatParamHandle.flatten_params(parameters, requires_grad=False)
my_slice = torch.chunk(all_shards, self.world_size)[self.rank]
# shards are padded but the full_param tensor is not
a, b = my_shard[0 : my_slice.numel()], my_slice
self.assertTrue(
torch.equal(my_shard[0 : my_slice.numel()].cpu(), my_slice.cpu())
)
@skip_if_lt_x_gpu(2)
@parametrize("recurse", [True, False])
@parametrize("summon_outer", [True, False])
@parametrize("mixed_precision", [True, False])
def test_summon_full_param_recursive(self, recurse, summon_outer, mixed_precision):
mixed_precision = MixedPrecision(param_dtype=torch.float16) if mixed_precision else None
model = FSDP(
nn.Sequential(
FSDP(nn.Linear(5, 5, bias=False), mixed_precision=mixed_precision),
nn.Linear(5, 3, bias=False),
),
mixed_precision=mixed_precision,
).cuda(self.rank)
global_inner_numel = self.get_model_param_count(nn.Linear(5, 5, bias=False))
global_outer_numel = self.get_model_param_count(nn.Linear(5, 3, bias=False))
shard_inner_numel = int(math.ceil(global_inner_numel / self.world_size))
shard_outer_numel = int(math.ceil(global_outer_numel / self.world_size))
outer_param = model.get_parameter("_fsdp_wrapped_module.flat_param")
inner_param = model.get_parameter(
"_fsdp_wrapped_module._fpw_module.0._fsdp_wrapped_module.flat_param"
)
self.assertEqual(shard_outer_numel, outer_param.numel())
self.assertEqual(shard_inner_numel, inner_param.numel())
model_to_summon = model if summon_outer else model[0]
# outer is summoned if _summon_full_param is called on the outer FSDP module
expected_outer_numel = global_outer_numel if summon_outer else shard_outer_numel
# inner is summoned if _summon_full_param is called with recursion or on the inner FSDP module
expected_inner_numel = (
global_inner_numel if recurse or not summon_outer else shard_inner_numel
)
with model_to_summon.summon_full_params(model_to_summon, recurse=recurse):
self.assertEqual(expected_outer_numel, outer_param.numel())
self.assertEqual(expected_inner_numel, inner_param.numel())
@skip_if_lt_x_gpu(2)
def test_cannot_summon_full_params_from_forward(self):
class MyModule(nn.Module):
def __init__(self):
super().__init__()
self.a = nn.Parameter(torch.zeros(5))
def forward(self, fsdp_module):
with fsdp_module.summon_full_params(fsdp_module):
pass
model = FSDP(MyModule()).cuda(self.rank)
with self.assertRaisesRegex(
ValueError, "current state is TrainingState_.FORWARD"
):
model(model)
@skip_if_lt_x_gpu(2)
def test_cannot_summon_full_params_from_backward(self):
model = FSDP(nn.Linear(2, 1)).cuda(self.rank)
output = model(torch.ones(2).cuda(self.rank))
def bad_backwards_hook(tensor):
with model.summon_full_params(model):
pass
return None
self.assertTrue(output.requires_grad)
output.register_hook(bad_backwards_hook)
with self.assertRaisesRegex(
ValueError, "current state is TrainingState_.BACKWARD_PRE"
):
output.backward()
@skip_if_lt_x_gpu(2)
@parametrize("mixed_precision", [True, False])
def test_summon_full_params_respects_reshard_after_forward(self, mixed_precision):
mixed_precision = MixedPrecision(param_dtype=torch.float16) if mixed_precision else None
model = FSDP(
nn.Sequential(
FSDP(nn.Linear(5, 5, bias=False), mixed_precision=mixed_precision),
nn.Linear(5, 3, bias=False),
),
mixed_precision=mixed_precision,
).cuda(self.rank)
outer_param = model.get_parameter("_fsdp_wrapped_module.flat_param")
inner_param = model.get_parameter(
"_fsdp_wrapped_module._fpw_module.0._fsdp_wrapped_module.flat_param"
)
outer_full_param_size = outer_param.numel() * self.world_size
# trigger lazy init
model(torch.zeros(5).cuda(self.rank))
# the root FSDP module keeps all params around
self.assertEqual(
outer_full_param_size, outer_param._full_param_padded.storage().size()
)
self.assertEqual(0, inner_param._full_param_padded.storage().size())
# similarly summon_full_params should have the same behavior
with model.summon_full_params(model):
pass
self.assertEqual(
outer_full_param_size, outer_param._full_param_padded.storage().size()
)
self.assertEqual(0, inner_param._full_param_padded.storage().size())
@skip_if_lt_x_gpu(2)
def test_summon_single_param(self):
model = FSDP(nn.Linear(1, 1, bias=False)).cuda(self.rank)
p = model.get_parameter("_fsdp_wrapped_module.flat_param")
self.assertEqual(1, p.numel())
with torch.no_grad():
# This sets the local shard value
p[0] = self.rank + 2
with model.summon_full_params(model, writeback=True):
self.assertEqual(1, p.numel())
with torch.no_grad():
p.copy_(torch.zeros_like(p))
# most ranks hold no data and wrote to padding so only rank zero will observe the above write
if self.rank == 0:
self.assertEqual(0, p[0])
else:
self.assertEqual(self.rank + 2, p[0])
@skip_if_lt_x_gpu(2)
@parametrize("rank0_only", [True, False])
@parametrize("offload_to_cpu", [True, False])
def test_summon_full_params_equivalence(self, rank0_only, offload_to_cpu):
offload = CPUOffload(offload_params=True)
model = FSDP(
DeterministicModel(wrap_fsdp=True, cpu_offload=offload), cpu_offload=offload
)
local_model = DeterministicModel(wrap_fsdp=False)
params_to_compare = (
[p.clone() for p in model.parameters()]
if rank0_only and self.rank != 0
else list(local_model.parameters())
)
writeback = not rank0_only
with model.summon_full_params(
model,
recurse=True,
rank0_only=rank0_only,
writeback=writeback,
offload_to_cpu=offload_to_cpu,
):
if writeback:
with torch.no_grad():
for p in model.parameters():
p.add_(1)
for p in params_to_compare:
p.add_(1)
# Below sleep causes failures without stream synchronization in
# summon_full_params fix.
torch.cuda._sleep(1000000)
# FSDP param deepcopy() of params has issues
fsdp_params = [p.clone() for p in model.parameters()]
self.assertEqual(fsdp_params, params_to_compare)
# CPU offload is enabled for main API, so we should point back to CPU
for param in model.parameters():
self.assertEqual(param.device, torch.device("cpu"))
@skip_if_lt_x_gpu(2)
def test_summon_from_non_fsdp(self):
class FSDPContainer(nn.Module):
def __init__(self, fsdp_1, fsdp_2, fsdp_3):
super().__init__()
self.fsdp_1 = fsdp_1
self.fsdp_2 = fsdp_2
self.fsdp_3 = fsdp_3
model_fsdp = FSDPContainer(
FSDP(DeterministicModel(wrap_fsdp=True)),
FSDP(DeterministicModel(wrap_fsdp=True)),
DeterministicModel(wrap_fsdp=False),
)
model_no_fsdp = FSDPContainer(
DeterministicModel(wrap_fsdp=False),
DeterministicModel(wrap_fsdp=False),
DeterministicModel(wrap_fsdp=False),
)
params_to_compare = list(model_no_fsdp.parameters())
with FSDP.summon_full_params(model_fsdp):
fsdp_params = [p.clone() for p in model_fsdp.parameters()]
self.assertEqual(params_to_compare, fsdp_params)
@skip_if_lt_x_gpu(2)
@parametrize("rank0_only", [True, False])
@parametrize("offload_to_cpu", [True, False])
@parametrize("mixed_precision", [True, False])
def test_reshard_outside_forward_backward_iteration(
self, rank0_only, offload_to_cpu, mixed_precision
):
mixed_precision = MixedPrecision(param_dtype=torch.float16) if mixed_precision else None
model = FSDP(
nn.Sequential(
FSDP(nn.Linear(5, 5, bias=False), mixed_precision=mixed_precision),
nn.Linear(5, 1, bias=False),
),
mixed_precision=mixed_precision,
).cuda(self.rank)
outer_param = model.get_parameter("_fsdp_wrapped_module.flat_param")
inner_param = model.get_parameter(
"_fsdp_wrapped_module._fpw_module.0._fsdp_wrapped_module.flat_param"
)
outer_full_param_size = outer_param.numel() * self.world_size
# First lets validate our assumption about resharding
output = model(torch.zeros(5).cuda(self.rank))
# the root FSDP module keeps all params around
self.assertEqual(
outer_full_param_size, outer_param._full_param_padded.storage().size()
)
self.assertEqual(0, inner_param._full_param_padded.storage().size())
output.backward()
# we reshard everything after backward() finishes
self.assertEqual(0, outer_param._full_param_padded.storage().size())
self.assertEqual(0, inner_param._full_param_padded.storage().size())
# now lets repeat it with summon done in between
output = model(torch.zeros(5).cuda(self.rank))
self.assertEqual(
outer_full_param_size, outer_param._full_param_padded.storage().size()
)
self.assertEqual(0, inner_param._full_param_padded.storage().size())
with model.summon_full_params(
model,
rank0_only=rank0_only,
writeback=not rank0_only,
offload_to_cpu=offload_to_cpu,
):
pass
self.assertEqual(
outer_full_param_size, outer_param._full_param_padded.storage().size()
)
self.assertEqual(0, inner_param._full_param_padded.storage().size())
output.backward()
with model.summon_full_params(
model,
rank0_only=rank0_only,
writeback=not rank0_only,
offload_to_cpu=offload_to_cpu,
):
pass
self.assertEqual(0, outer_param._full_param_padded.storage().size())
self.assertEqual(0, inner_param._full_param_padded.storage().size())
@skip_if_lt_x_gpu(2)
@parametrize("rank0_only", [True, False])
@parametrize("offload_to_cpu", [True, False])
@parametrize("mixed_precision", [True, False])
def test_params_are_unflattenned(self, rank0_only, offload_to_cpu, mixed_precision):
layer_shape = (10, 12)
model = nn.Linear(*layer_shape, bias=False).cuda(self.rank)
mixed_precision = MixedPrecision(param_dtype=torch.float16) if mixed_precision else None
fsdp_model = FSDP(deepcopy(model), mixed_precision=mixed_precision).cuda(
self.rank
)
def _get_flat_param():
return fsdp_model.get_parameter("_fsdp_wrapped_module.flat_param")
flattened_param = _get_flat_param()
self.assertEqual(layer_shape[0] * layer_shape[1] / 2, flattened_param.numel())
with fsdp_model.summon_full_params(
fsdp_model,
rank0_only=rank0_only,
writeback=not rank0_only,
offload_to_cpu=offload_to_cpu,
):
if self.rank == 0 or not rank0_only:
self.assertEqual(fsdp_model.weight.shape, model.weight.shape)
expected_device = (
torch.device("cpu")
if offload_to_cpu
else torch.device("cuda", torch.cuda.current_device())
)
self.assertTrue(expected_device == fsdp_model.weight.device)
else:
# Nonzero rank with rank0_only maintains original params.
flat_within_ctx = _get_flat_param()
self.assertEqual(flat_within_ctx, flattened_param)
self.assertEqual(
flat_within_ctx.device, torch.device(torch.cuda.current_device())
)
# CPU offload should restore the param device
param = next(fsdp_model.parameters())
self.assertTrue(
param.device == torch.device("cuda", torch.cuda.current_device())
)
@skip_if_lt_x_gpu(2)
@parametrize("rank0_only", [True, False])
@parametrize("offload_to_cpu", [True, False])
@parametrize("mixed_precision", [True, False])
def test_params_count_and_value(
self,
rank0_only: bool,
offload_to_cpu: bool,
mixed_precision: bool,
):
mixed_precision = MixedPrecision(param_dtype=torch.float16) if mixed_precision else None
model = NestedWrappedModule.init(
self.process_group,
FSDPInitMode.NO_FSDP,
CUDAInitMode.CUDA_BEFORE,
deterministic=True,
)
fsdp_model = NestedWrappedModule.init(
self.process_group,
FSDPInitMode.RECURSIVE,
CUDAInitMode.CUDA_BEFORE,
deterministic=True,
)
dev = (
torch.device("cpu")
if offload_to_cpu
else torch.device("cuda", torch.cuda.current_device())
)
params_to_compare = (
[p.to(dev) for p in model.module.parameters()]
if not rank0_only or self.rank == 0
else list(p.clone() for p in fsdp_model.parameters())
)
with FSDP.summon_full_params(
fsdp_model, rank0_only=rank0_only, writeback=not rank0_only
):
for p1, p2 in itertools.zip_longest(
fsdp_model.parameters(), params_to_compare
):
self.assertEqual(p1, p2)
# CPU offload should restore the param device
param = next(fsdp_model.parameters())
self.assertTrue(
param.device == torch.device("cuda", torch.cuda.current_device())
)
@skip_if_lt_x_gpu(2)
def test_raises_rank0_with_writeback(self):
"""Tests that ``summon_full_params()`` with both ``rank0_only=True``
and ``writeback=True`` raises an error."""
nested_wrapped_module = NestedWrappedModule.init(
self.process_group,
FSDPInitMode.RECURSIVE,
CUDAInitMode.CUDA_BEFORE,
)
with self.assertRaisesRegex(ValueError, "is not supported"):
with FSDP.summon_full_params(
nested_wrapped_module, rank0_only=True, writeback=True
):
pass
@skip_if_lt_x_gpu(2)
@parametrize("prefix", ["", "test_prefix"])
@parametrize("recurse", [False, True])
def test_named_parameters_buffers(self, prefix: str, recurse: bool):
"""Tests that ``named_parameters()`` and ``named_buffers()`` for a
top-level FSDP-wrapped model matches their behavior for the equivalent
non-wrapped model."""
model = NestedWrappedModule.init(
self.process_group,
FSDPInitMode.NO_FSDP,
CUDAInitMode.CUDA_BEFORE,
deterministic=True,
)
model.register_buffer("buffer", torch.ones(1))
# `named_parameters()` and `named_buffers` will contain FSDP prefixes
# if called on a non-FSDP root module
fsdp_model = FSDP(
NestedWrappedModule.init(
self.process_group,
FSDPInitMode.NO_FSDP,
CUDAInitMode.CUDA_BEFORE,
deterministic=True,
),
self.process_group,
)
fsdp_model.register_buffer("buffer", torch.ones(1))
with FSDP.summon_full_params(fsdp_model):
for call in ["named_parameters", "named_buffers"]:
for (n1, p1), (n2, p2) in itertools.zip_longest(
getattr(fsdp_model, call)(prefix=prefix, recurse=recurse),
getattr(model, call)(prefix=prefix, recurse=recurse),
):
self.assertEqual(n1, n2)
self.assertEqual(p1, p2)
instantiate_parametrized_tests(TestSummonFullParams)
instantiate_parametrized_tests(TestSummonFullParamsNoShard)
if __name__ == "__main__":
run_tests()
|