File: test_fsdp_summon_full_params.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (574 lines) | stat: -rw-r--r-- 22,036 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
# Owner(s): ["oncall: distributed"]
import itertools
import math
import sys
from copy import deepcopy

import torch
import torch.nn as nn
from torch import distributed as dist
from torch.distributed.fsdp import CPUOffload
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import MixedPrecision
from torch.distributed.fsdp.flat_param import FlatParamHandle
from torch.distributed.fsdp.wrap import enable_wrap, wrap
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
    CUDAInitMode,
    DeterministicModel,
    FSDPInitMode,
    FSDPTest,
    NestedWrappedModule,
)
from torch.testing._internal.common_utils import (
    TEST_WITH_DEV_DBG_ASAN,
    instantiate_parametrized_tests,
    parametrize,
    run_tests,
)

if not dist.is_available():
    print("Distributed not available, skipping tests", file=sys.stderr)
    sys.exit(0)

if TEST_WITH_DEV_DBG_ASAN:
    print(
        "Skip dev-asan as torch + multiprocessing spawn have known issues",
        file=sys.stderr,
    )
    sys.exit(0)


def _run_test_summon_full_param_writeback(
    cls, writeback, modify_outer, *fsdp_args, **fsdp_kwargs
):
    with enable_wrap(wrapper_cls=FSDP, *fsdp_args, **fsdp_kwargs):
        lin1 = wrap(nn.Linear(5, 5, bias=False).cuda(cls.rank))
        lin2 = nn.Linear(5, 3, bias=False).cuda(cls.rank)
        model = wrap(nn.Sequential(lin1, lin2))

    # set the value
    outer_param = model.get_parameter("_fsdp_wrapped_module.flat_param")
    inner_param = model.get_parameter(
        "_fsdp_wrapped_module._fpw_module.0._fsdp_wrapped_module.flat_param"
    )
    p = outer_param if modify_outer else inner_param

    with torch.no_grad():
        # This sets the local shard value
        p[0] = cls.rank + 2

    with model.summon_full_params(model, writeback=writeback):
        with torch.no_grad():
            p.copy_(torch.zeros_like(p))

    if writeback or cls.world_size == 1:
        # When world_size = 1, FSDP does not shard and parameter is not set to
        # a local shard, so write is always reflected.
        cls.assertEqual(p.cpu()[0], 0)
    else:
        cls.assertEqual(p.cpu()[0], cls.rank + 2)


class TestSummonFullParamsNoShard(FSDPTest):
    @property
    def world_size(self):
        return 1  # does not shard

    @skip_if_lt_x_gpu(2)
    @parametrize("writeback", [True, False])
    @parametrize("modify_outer", [True, False])
    @parametrize("mixed_precision", [True, False])
    # TODO: CPUOffload summon + writeback does not
    # work when param is not sharded
    # (currently when world_size == 1)
    def test_summon_full_param_writeback(
        self, writeback, modify_outer, mixed_precision
    ):
        mixed_precision = MixedPrecision(param_dtype=torch.float16) if mixed_precision else None
        return _run_test_summon_full_param_writeback(
            self,
            writeback,
            modify_outer=modify_outer,
            cpu_offload=CPUOffload(offload_params=False),
            mixed_precision=mixed_precision,
        )


class TestSummonFullParams(FSDPTest):
    @property
    def world_size(self):
        return 2

    def get_model_param_count(self, m):
        return sum([p.numel() for p in m.parameters()])

    # padding ensures that all shards have the same size with the least amount of padding
    def get_expected_sharded_size(self, global_size):
        return int(math.ceil(global_size / self.world_size))

    @skip_if_lt_x_gpu(2)
    @parametrize("writeback", [True, False])
    @parametrize(
        "cpu_offload",
        [CPUOffload(offload_params=True), CPUOffload(offload_params=False)],
    )
    @parametrize("mixed_precision", [True, False])
    @parametrize("modify_outer", [True, False])
    def test_summon_full_param_writeback(
        self, writeback, cpu_offload, mixed_precision, modify_outer
    ):
        mixed_precision = MixedPrecision(param_dtype=torch.float16) if mixed_precision else None
        return _run_test_summon_full_param_writeback(
            self,
            writeback,
            modify_outer,
            cpu_offload=cpu_offload,
            mixed_precision=mixed_precision,
        )

    @skip_if_lt_x_gpu(2)
    @parametrize("mixed_precision", [True, False])
    def test_summon_full_param_shard_value(self, mixed_precision):
        mixed_precision = MixedPrecision(param_dtype=torch.float16) if mixed_precision else None
        raw_model = nn.Linear(10, 11)
        raw_model_size = self.get_model_param_count(raw_model)
        expected_shard_size = self.get_expected_sharded_size(raw_model_size)

        model = FSDP(raw_model.cuda(self.rank), mixed_precision=mixed_precision)
        self.assertEqual(expected_shard_size, self.get_model_param_count(model))

        # we're assuming a single flattened param
        self.assertEqual(1, len(list(model.parameters())))

        my_shard = torch.clone(next(model.parameters()))

        with model.summon_full_params(model):
            self.assertEqual(raw_model_size, self.get_model_param_count(model))
            parameters = list(model.parameters())
            all_shards = FlatParamHandle.flatten_params(parameters, requires_grad=False)
            my_slice = torch.chunk(all_shards, self.world_size)[self.rank]

            # shards are padded but the full_param tensor is not
            a, b = my_shard[0 : my_slice.numel()], my_slice
            self.assertTrue(
                torch.equal(my_shard[0 : my_slice.numel()].cpu(), my_slice.cpu())
            )

    @skip_if_lt_x_gpu(2)
    @parametrize("recurse", [True, False])
    @parametrize("summon_outer", [True, False])
    @parametrize("mixed_precision", [True, False])
    def test_summon_full_param_recursive(self, recurse, summon_outer, mixed_precision):
        mixed_precision = MixedPrecision(param_dtype=torch.float16) if mixed_precision else None
        model = FSDP(
            nn.Sequential(
                FSDP(nn.Linear(5, 5, bias=False), mixed_precision=mixed_precision),
                nn.Linear(5, 3, bias=False),
            ),
            mixed_precision=mixed_precision,
        ).cuda(self.rank)

        global_inner_numel = self.get_model_param_count(nn.Linear(5, 5, bias=False))
        global_outer_numel = self.get_model_param_count(nn.Linear(5, 3, bias=False))

        shard_inner_numel = int(math.ceil(global_inner_numel / self.world_size))
        shard_outer_numel = int(math.ceil(global_outer_numel / self.world_size))

        outer_param = model.get_parameter("_fsdp_wrapped_module.flat_param")
        inner_param = model.get_parameter(
            "_fsdp_wrapped_module._fpw_module.0._fsdp_wrapped_module.flat_param"
        )
        self.assertEqual(shard_outer_numel, outer_param.numel())
        self.assertEqual(shard_inner_numel, inner_param.numel())

        model_to_summon = model if summon_outer else model[0]
        # outer is summoned if _summon_full_param is called on the outer FSDP module
        expected_outer_numel = global_outer_numel if summon_outer else shard_outer_numel

        # inner is summoned if _summon_full_param is called with recursion or on the inner FSDP module
        expected_inner_numel = (
            global_inner_numel if recurse or not summon_outer else shard_inner_numel
        )

        with model_to_summon.summon_full_params(model_to_summon, recurse=recurse):
            self.assertEqual(expected_outer_numel, outer_param.numel())
            self.assertEqual(expected_inner_numel, inner_param.numel())

    @skip_if_lt_x_gpu(2)
    def test_cannot_summon_full_params_from_forward(self):
        class MyModule(nn.Module):
            def __init__(self):
                super().__init__()
                self.a = nn.Parameter(torch.zeros(5))

            def forward(self, fsdp_module):
                with fsdp_module.summon_full_params(fsdp_module):
                    pass

        model = FSDP(MyModule()).cuda(self.rank)
        with self.assertRaisesRegex(
            ValueError, "current state is TrainingState_.FORWARD"
        ):
            model(model)

    @skip_if_lt_x_gpu(2)
    def test_cannot_summon_full_params_from_backward(self):
        model = FSDP(nn.Linear(2, 1)).cuda(self.rank)

        output = model(torch.ones(2).cuda(self.rank))

        def bad_backwards_hook(tensor):
            with model.summon_full_params(model):
                pass
            return None

        self.assertTrue(output.requires_grad)
        output.register_hook(bad_backwards_hook)

        with self.assertRaisesRegex(
            ValueError, "current state is TrainingState_.BACKWARD_PRE"
        ):
            output.backward()

    @skip_if_lt_x_gpu(2)
    @parametrize("mixed_precision", [True, False])
    def test_summon_full_params_respects_reshard_after_forward(self, mixed_precision):
        mixed_precision = MixedPrecision(param_dtype=torch.float16) if mixed_precision else None
        model = FSDP(
            nn.Sequential(
                FSDP(nn.Linear(5, 5, bias=False), mixed_precision=mixed_precision),
                nn.Linear(5, 3, bias=False),
            ),
            mixed_precision=mixed_precision,
        ).cuda(self.rank)

        outer_param = model.get_parameter("_fsdp_wrapped_module.flat_param")
        inner_param = model.get_parameter(
            "_fsdp_wrapped_module._fpw_module.0._fsdp_wrapped_module.flat_param"
        )
        outer_full_param_size = outer_param.numel() * self.world_size

        # trigger lazy init
        model(torch.zeros(5).cuda(self.rank))
        # the root FSDP module keeps all params around
        self.assertEqual(
            outer_full_param_size, outer_param._full_param_padded.storage().size()
        )
        self.assertEqual(0, inner_param._full_param_padded.storage().size())

        # similarly summon_full_params should have the same behavior
        with model.summon_full_params(model):
            pass
        self.assertEqual(
            outer_full_param_size, outer_param._full_param_padded.storage().size()
        )
        self.assertEqual(0, inner_param._full_param_padded.storage().size())

    @skip_if_lt_x_gpu(2)
    def test_summon_single_param(self):
        model = FSDP(nn.Linear(1, 1, bias=False)).cuda(self.rank)

        p = model.get_parameter("_fsdp_wrapped_module.flat_param")
        self.assertEqual(1, p.numel())

        with torch.no_grad():
            # This sets the local shard value
            p[0] = self.rank + 2

        with model.summon_full_params(model, writeback=True):
            self.assertEqual(1, p.numel())
            with torch.no_grad():
                p.copy_(torch.zeros_like(p))

        # most ranks hold no data and wrote to padding so only rank zero will observe the above write
        if self.rank == 0:
            self.assertEqual(0, p[0])
        else:
            self.assertEqual(self.rank + 2, p[0])

    @skip_if_lt_x_gpu(2)
    @parametrize("rank0_only", [True, False])
    @parametrize("offload_to_cpu", [True, False])
    def test_summon_full_params_equivalence(self, rank0_only, offload_to_cpu):
        offload = CPUOffload(offload_params=True)
        model = FSDP(
            DeterministicModel(wrap_fsdp=True, cpu_offload=offload), cpu_offload=offload
        )
        local_model = DeterministicModel(wrap_fsdp=False)

        params_to_compare = (
            [p.clone() for p in model.parameters()]
            if rank0_only and self.rank != 0
            else list(local_model.parameters())
        )

        writeback = not rank0_only

        with model.summon_full_params(
            model,
            recurse=True,
            rank0_only=rank0_only,
            writeback=writeback,
            offload_to_cpu=offload_to_cpu,
        ):
            if writeback:
                with torch.no_grad():
                    for p in model.parameters():
                        p.add_(1)
                    for p in params_to_compare:
                        p.add_(1)
            # Below sleep causes failures without stream synchronization in
            # summon_full_params fix.
            torch.cuda._sleep(1000000)
            # FSDP param deepcopy() of params has issues
            fsdp_params = [p.clone() for p in model.parameters()]

        self.assertEqual(fsdp_params, params_to_compare)

        # CPU offload is enabled for main API, so we should point back to CPU
        for param in model.parameters():
            self.assertEqual(param.device, torch.device("cpu"))

    @skip_if_lt_x_gpu(2)
    def test_summon_from_non_fsdp(self):
        class FSDPContainer(nn.Module):
            def __init__(self, fsdp_1, fsdp_2, fsdp_3):
                super().__init__()
                self.fsdp_1 = fsdp_1
                self.fsdp_2 = fsdp_2
                self.fsdp_3 = fsdp_3

        model_fsdp = FSDPContainer(
            FSDP(DeterministicModel(wrap_fsdp=True)),
            FSDP(DeterministicModel(wrap_fsdp=True)),
            DeterministicModel(wrap_fsdp=False),
        )
        model_no_fsdp = FSDPContainer(
            DeterministicModel(wrap_fsdp=False),
            DeterministicModel(wrap_fsdp=False),
            DeterministicModel(wrap_fsdp=False),
        )

        params_to_compare = list(model_no_fsdp.parameters())
        with FSDP.summon_full_params(model_fsdp):
            fsdp_params = [p.clone() for p in model_fsdp.parameters()]

        self.assertEqual(params_to_compare, fsdp_params)

    @skip_if_lt_x_gpu(2)
    @parametrize("rank0_only", [True, False])
    @parametrize("offload_to_cpu", [True, False])
    @parametrize("mixed_precision", [True, False])
    def test_reshard_outside_forward_backward_iteration(
        self, rank0_only, offload_to_cpu, mixed_precision
    ):
        mixed_precision = MixedPrecision(param_dtype=torch.float16) if mixed_precision else None
        model = FSDP(
            nn.Sequential(
                FSDP(nn.Linear(5, 5, bias=False), mixed_precision=mixed_precision),
                nn.Linear(5, 1, bias=False),
            ),
            mixed_precision=mixed_precision,
        ).cuda(self.rank)

        outer_param = model.get_parameter("_fsdp_wrapped_module.flat_param")
        inner_param = model.get_parameter(
            "_fsdp_wrapped_module._fpw_module.0._fsdp_wrapped_module.flat_param"
        )
        outer_full_param_size = outer_param.numel() * self.world_size

        # First lets validate our assumption about resharding

        output = model(torch.zeros(5).cuda(self.rank))
        # the root FSDP module keeps all params around
        self.assertEqual(
            outer_full_param_size, outer_param._full_param_padded.storage().size()
        )
        self.assertEqual(0, inner_param._full_param_padded.storage().size())

        output.backward()
        # we reshard everything after backward() finishes
        self.assertEqual(0, outer_param._full_param_padded.storage().size())
        self.assertEqual(0, inner_param._full_param_padded.storage().size())

        # now lets repeat it with summon done in between

        output = model(torch.zeros(5).cuda(self.rank))
        self.assertEqual(
            outer_full_param_size, outer_param._full_param_padded.storage().size()
        )
        self.assertEqual(0, inner_param._full_param_padded.storage().size())
        with model.summon_full_params(
            model,
            rank0_only=rank0_only,
            writeback=not rank0_only,
            offload_to_cpu=offload_to_cpu,
        ):
            pass
        self.assertEqual(
            outer_full_param_size, outer_param._full_param_padded.storage().size()
        )
        self.assertEqual(0, inner_param._full_param_padded.storage().size())

        output.backward()
        with model.summon_full_params(
            model,
            rank0_only=rank0_only,
            writeback=not rank0_only,
            offload_to_cpu=offload_to_cpu,
        ):
            pass
        self.assertEqual(0, outer_param._full_param_padded.storage().size())
        self.assertEqual(0, inner_param._full_param_padded.storage().size())

    @skip_if_lt_x_gpu(2)
    @parametrize("rank0_only", [True, False])
    @parametrize("offload_to_cpu", [True, False])
    @parametrize("mixed_precision", [True, False])
    def test_params_are_unflattenned(self, rank0_only, offload_to_cpu, mixed_precision):
        layer_shape = (10, 12)
        model = nn.Linear(*layer_shape, bias=False).cuda(self.rank)
        mixed_precision = MixedPrecision(param_dtype=torch.float16) if mixed_precision else None
        fsdp_model = FSDP(deepcopy(model), mixed_precision=mixed_precision).cuda(
            self.rank
        )

        def _get_flat_param():
            return fsdp_model.get_parameter("_fsdp_wrapped_module.flat_param")

        flattened_param = _get_flat_param()
        self.assertEqual(layer_shape[0] * layer_shape[1] / 2, flattened_param.numel())

        with fsdp_model.summon_full_params(
            fsdp_model,
            rank0_only=rank0_only,
            writeback=not rank0_only,
            offload_to_cpu=offload_to_cpu,
        ):
            if self.rank == 0 or not rank0_only:
                self.assertEqual(fsdp_model.weight.shape, model.weight.shape)
                expected_device = (
                    torch.device("cpu")
                    if offload_to_cpu
                    else torch.device("cuda", torch.cuda.current_device())
                )
                self.assertTrue(expected_device == fsdp_model.weight.device)
            else:
                # Nonzero rank with rank0_only maintains original params.
                flat_within_ctx = _get_flat_param()
                self.assertEqual(flat_within_ctx, flattened_param)
                self.assertEqual(
                    flat_within_ctx.device, torch.device(torch.cuda.current_device())
                )

        # CPU offload should restore the param device
        param = next(fsdp_model.parameters())
        self.assertTrue(
            param.device == torch.device("cuda", torch.cuda.current_device())
        )

    @skip_if_lt_x_gpu(2)
    @parametrize("rank0_only", [True, False])
    @parametrize("offload_to_cpu", [True, False])
    @parametrize("mixed_precision", [True, False])
    def test_params_count_and_value(
        self,
        rank0_only: bool,
        offload_to_cpu: bool,
        mixed_precision: bool,
    ):
        mixed_precision = MixedPrecision(param_dtype=torch.float16) if mixed_precision else None
        model = NestedWrappedModule.init(
            self.process_group,
            FSDPInitMode.NO_FSDP,
            CUDAInitMode.CUDA_BEFORE,
            deterministic=True,
        )
        fsdp_model = NestedWrappedModule.init(
            self.process_group,
            FSDPInitMode.RECURSIVE,
            CUDAInitMode.CUDA_BEFORE,
            deterministic=True,
        )
        dev = (
            torch.device("cpu")
            if offload_to_cpu
            else torch.device("cuda", torch.cuda.current_device())
        )
        params_to_compare = (
            [p.to(dev) for p in model.module.parameters()]
            if not rank0_only or self.rank == 0
            else list(p.clone() for p in fsdp_model.parameters())
        )
        with FSDP.summon_full_params(
            fsdp_model, rank0_only=rank0_only, writeback=not rank0_only
        ):
            for p1, p2 in itertools.zip_longest(
                fsdp_model.parameters(), params_to_compare
            ):
                self.assertEqual(p1, p2)

        # CPU offload should restore the param device
        param = next(fsdp_model.parameters())
        self.assertTrue(
            param.device == torch.device("cuda", torch.cuda.current_device())
        )

    @skip_if_lt_x_gpu(2)
    def test_raises_rank0_with_writeback(self):
        """Tests that ``summon_full_params()`` with both ``rank0_only=True``
        and ``writeback=True`` raises an error."""
        nested_wrapped_module = NestedWrappedModule.init(
            self.process_group,
            FSDPInitMode.RECURSIVE,
            CUDAInitMode.CUDA_BEFORE,
        )
        with self.assertRaisesRegex(ValueError, "is not supported"):
            with FSDP.summon_full_params(
                nested_wrapped_module, rank0_only=True, writeback=True
            ):
                pass

    @skip_if_lt_x_gpu(2)
    @parametrize("prefix", ["", "test_prefix"])
    @parametrize("recurse", [False, True])
    def test_named_parameters_buffers(self, prefix: str, recurse: bool):
        """Tests that ``named_parameters()`` and ``named_buffers()`` for a
        top-level FSDP-wrapped model matches their behavior for the equivalent
        non-wrapped model."""
        model = NestedWrappedModule.init(
            self.process_group,
            FSDPInitMode.NO_FSDP,
            CUDAInitMode.CUDA_BEFORE,
            deterministic=True,
        )
        model.register_buffer("buffer", torch.ones(1))
        # `named_parameters()` and `named_buffers` will contain FSDP prefixes
        # if called on a non-FSDP root module
        fsdp_model = FSDP(
            NestedWrappedModule.init(
                self.process_group,
                FSDPInitMode.NO_FSDP,
                CUDAInitMode.CUDA_BEFORE,
                deterministic=True,
            ),
            self.process_group,
        )
        fsdp_model.register_buffer("buffer", torch.ones(1))
        with FSDP.summon_full_params(fsdp_model):
            for call in ["named_parameters", "named_buffers"]:
                for (n1, p1), (n2, p2) in itertools.zip_longest(
                    getattr(fsdp_model, call)(prefix=prefix, recurse=recurse),
                    getattr(model, call)(prefix=prefix, recurse=recurse),
                ):
                    self.assertEqual(n1, n2)
                    self.assertEqual(p1, p2)


instantiate_parametrized_tests(TestSummonFullParams)
instantiate_parametrized_tests(TestSummonFullParamsNoShard)


if __name__ == "__main__":
    run_tests()