File: test_fsdp_tp_integration.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (486 lines) | stat: -rw-r--r-- 18,663 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
# Owner(s): ["oncall: distributed"]
import copy
import sys
from collections import OrderedDict
from typing import Any, Dict, List, NamedTuple, Optional, Tuple

import torch
import torch.distributed._shard.sharding_spec as shard_spec
from torch import distributed as dist
from torch.distributed._shard import shard_module
from torch.distributed._shard.sharded_tensor.api import Shard, ShardedTensor
from torch.distributed._shard.sharding_plan import ShardingPlan
from torch.distributed._shard.sharding_spec import ChunkShardingSpec
from torch.distributed.fsdp._fsdp_extensions import _set_fsdp_extensions, FSDPExtensions
from torch.distributed.fsdp._shard_utils import _create_chunk_sharded_tensor
from torch.distributed.fsdp._utils import _set_fsdp_flattened
from torch.distributed.fsdp.fully_sharded_data_parallel import (
    CPUOffload,
    FullyShardedDataParallel as FSDP,
    StateDictType,
)
from torch.distributed.remote_device import _remote_device
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import (
    instantiate_parametrized_tests,
    parametrize,
    run_tests,
    TEST_WITH_DEV_DBG_ASAN,
)

if not dist.is_available():
    print("Distributed not available, skipping tests", file=sys.stderr)
    sys.exit(0)

if TEST_WITH_DEV_DBG_ASAN:
    print(
        "Skip dev-asan as torch + multiprocessing spawn have known issues",
        file=sys.stderr,
    )
    sys.exit(0)


class STShardingInfo(NamedTuple):
    """:class:`ShardedTensor` sharding information."""

    sharding_spec: shard_spec.ShardingSpec
    global_size: torch.Size
    process_group: dist.ProcessGroup


class ShardedTensorExtensions(FSDPExtensions):
    def pre_flatten_transform(
        self,
        tensor: torch.Tensor,
    ) -> Tuple[torch.Tensor, Optional[Any]]:
        if type(tensor) is ShardedTensor:
            param_name_to_sharding_info = STShardingInfo(
                tensor.sharding_spec(), tensor.size(), tensor._process_group
            )
            local_tensor = tensor.local_tensor()
            return local_tensor, param_name_to_sharding_info
        return tensor, None

    def post_unflatten_transform(
        self, tensor: torch.Tensor, param_name_to_sharding_info: STShardingInfo
    ) -> torch.Tensor:
        sharded_tensor = ShardedTensor._init_from_local_tensor(
            tensor,
            _rewrite_spec_if_needed(
                param_name_to_sharding_info.sharding_spec,
                tensor,
                dist.get_rank(param_name_to_sharding_info.process_group),
            ),
            param_name_to_sharding_info.global_size,
            process_group=param_name_to_sharding_info.process_group,
        )
        _set_fsdp_flattened(sharded_tensor)
        return sharded_tensor

    def chunk_tensor(
        self,
        tensor: torch.Tensor,
        rank: int,
        world_size: int,
        num_devices_per_node: int,
        pg: dist.ProcessGroup,
    ) -> torch.Tensor:
        if type(tensor) is ShardedTensor:
            assert len(tensor.local_shards()) == 1

            inner_param = tensor.local_tensor()
            inner_st = _create_chunk_sharded_tensor(
                inner_param,
                rank,
                world_size,
                num_devices_per_node,
                pg,
            )

            outer_local_shard = tensor.local_shards()[0]
            shards: List[Shard] = [
                Shard(inner_st, copy.deepcopy(outer_local_shard.metadata))
            ]
            st_meta = copy.deepcopy(tensor.metadata())
            st_meta.tensor_properties.requires_grad = False

            st_outer = ShardedTensor._init_from_local_shards_and_global_metadata(
                shards,
                sharded_tensor_metadata=st_meta,
                process_group=tensor._process_group,
                init_rrefs=False,
            )
            return st_outer
        else:
            return _create_chunk_sharded_tensor(
                tensor, rank, world_size, num_devices_per_node, pg
            )

    def pre_load_state_dict_transform(
        self,
        tensor: torch.Tensor,
    ) -> Tuple[torch.Tensor, List[torch.Tensor]]:
        shards = tensor.local_shards()
        # default impl removes this line
        if len(shards) == 1 and type(shards[0].tensor) is ShardedTensor:
            tensor = shards[0].tensor
            shards = tensor.local_shards()
        return (tensor, [shards[0].tensor] if len(shards) > 0 else [])


_set_fsdp_extensions(ShardedTensorExtensions())


def _rewrite_spec_if_needed(
    spec: shard_spec.ShardingSpec, tensor: torch.Tensor, rank: int
):
    """
    Rewrites ``spec`` to match the device of ``tensor``.

    Curerntly, ``FSDP.sharded_optim_state_dict` moves optimizer state to CPU
    (without choice), so if the original ``ShardingSpec`` produces non-CPU
    metadta, then the ST construction errors.
    """
    if not isinstance(spec, ChunkShardingSpec):
        return spec
    # Determine if we need to rewrite the spec
    rewrite = False
    for p in spec.placements:
        if p.rank() == rank and p.device() != tensor.device:
            rewrite = True
            break
    if rewrite:
        spec = copy.deepcopy(spec)
        for i, placement in enumerate(spec.placements):
            if placement.rank() == rank and placement.device() != tensor.device:
                spec.placements[i] = _remote_device(f"rank:{rank}/{tensor.device}")
    return spec


def _is_nested_tensor(val: Any) -> bool:
    if type(val) is ShardedTensor:
        if len(val.local_shards()) == 0:
            return False
        if type(val.local_shards()[0].tensor) is ShardedTensor:
            return True
    return False


class SimpleModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.net1 = torch.nn.Linear(5, 8)
        self.relu = torch.nn.ReLU()
        self.net2 = torch.nn.Linear(8, 4)
        self.net3 = torch.nn.Linear(4, 12)

    def forward(self, x):
        return self.net3(self.net2(self.relu(self.net1(x))))

    @staticmethod
    def module_sharding_plan(specs):
        colwise_spec, rowwise_spec = specs[0], specs[1]
        return ShardingPlan(
            plan={
                "net1.weight": colwise_spec,
                "net2.weight": rowwise_spec,
            },
            output_plan={
                "net2": colwise_spec,
            },
            return_local_tensor=["net2"],
        )

    @staticmethod
    def get_sharded_param_names() -> List[str]:
        return ["net1.weight", "net2.weight"]

    @staticmethod
    def get_non_sharded_param_names() -> List[str]:
        return ["net3.weight", "net3.bias"]


class TestTPFSDPIntegration(FSDPTest):
    def _get_params_and_sharding_info(
        self,
        model: SimpleModel,
        sharded_param_names: List[str],
        tensor_parallel_size: int,
    ) -> Tuple[Dict[str, int], Dict[str, Tuple[torch.Size, int]]]:
        """ """
        assert (
            type(model) is SimpleModel
        ), "Expects a `SimpleModel` since the sharding cases on the model definition"
        param_name_to_numel = OrderedDict()
        param_name_to_sharding_info = OrderedDict()
        for param_name, param in model.named_parameters():
            if param_name not in sharded_param_names:
                param_name_to_numel[param_name] = param.numel()
            else:
                param_name_to_numel[param_name] = param.numel() // tensor_parallel_size
                param_name_to_sharding_info[param_name] = (
                    param.size(),
                    0 if "net1" in param_name else 1,
                )
        return param_name_to_numel, param_name_to_sharding_info

    def _get_sub_pgs(self, tensor_parallel_size: int):
        """
        Generates TP and FSDP subprocess groups. ``tensor_parallel_size`` gives
        the TP process group size.

        For example, if the global world size is 8 and the tensor parallel size
        is 2, then this creates:
        - 4 TP subprocess groups: [0, 1], [2, 3], [4, 5], [6, 7]
        - 2 FSDP subprocess groups: [0, 2, 4, 6], [1, 3, 5, 7]
        """
        tp_ranks: List[List[int]] = []
        fsdp_ranks: List[List[int]] = []
        for rank in range(self.world_size):
            tp_idx = rank // tensor_parallel_size
            if len(tp_ranks) <= tp_idx:
                tp_ranks.append([])
            tp_ranks[tp_idx].append(rank)
            fsdp_idx = rank % tensor_parallel_size
            if len(fsdp_ranks) <= fsdp_idx:
                fsdp_ranks.append([])
            fsdp_ranks[fsdp_idx].append(rank)
        tp_pgs = [dist.new_group(ranks) for ranks in tp_ranks]
        fsdp_pgs = [dist.new_group(ranks) for ranks in fsdp_ranks]
        tp_pg = tp_pgs[self.rank // tensor_parallel_size]
        fsdp_pg = fsdp_pgs[self.rank % tensor_parallel_size]
        return tp_pg, fsdp_pg

    def _get_chunk_sharding_spec(self, tp_world_size: int, tp_pg: dist.ProcessGroup):
        placements = [
            f"rank:{idx}/cuda:{dist.distributed_c10d.get_global_rank(tp_pg, idx) % torch.cuda.device_count()}"
            for idx in range(tp_world_size)
        ]
        # Rowwise and colwise sharding are specified with respect to the
        # transposed linear weight
        colwise_spec = ChunkShardingSpec(dim=0, placements=placements)
        rowwise_spec = ChunkShardingSpec(dim=1, placements=placements)
        return colwise_spec, rowwise_spec

    def _sync_tp_grads(
        self,
        tp_fsdp_model: FSDP,
        tp_pg: dist.ProcessGroup,
        param_name_to_numel: Dict[str, int],
        non_sharded_param_names: List[str],
    ) -> None:
        """
        Syncs the tensor parallel parameters' gradients following the data
        parallel paradigm where gradients are averaged over ranks (in this
        case, the ones in the tensor parallel process group).
        """
        tp_world_size = tp_pg.size()
        fsdp_world_size = self.world_size // tp_world_size
        assert (
            type(tp_fsdp_model) is FSDP and len(list(tp_fsdp_model.parameters())) == 1
        ), (
            "The following logic assumes a single top-level-only FSDP wrapping "
            "the model with TP already applied"
        )
        flat_param = tp_fsdp_model.params[0]
        splits = tuple(param_name_to_numel.values())
        # Create a mask over the gradient elements to manually reduce
        unsharded_size = torch.Size([flat_param.numel() * fsdp_world_size])
        unsharded_zeros = torch.zeros(unsharded_size, device=flat_param.device)
        per_param_masks = unsharded_zeros.split(splits)
        for param_idx, param_name in enumerate(
            param_name_to_numel.keys()
        ):  # assumes fixed order
            if param_name not in non_sharded_param_names:
                per_param_masks[param_idx][:] = 1
        unsharded_mask = torch.cat(per_param_masks).contiguous().type(torch.BoolTensor)
        sharded_mask = unsharded_mask.chunk(fsdp_world_size)[self.rank // tp_world_size]
        grad_device = flat_param.grad.device
        grad = flat_param.grad.detach().clone().cuda(self.rank)
        dist.all_reduce(grad, op=dist.ReduceOp.SUM, group=tp_pg)
        grad = grad.to(grad_device)
        flat_param.grad[~sharded_mask] = grad[~sharded_mask]
        # Average *all* gradient elements to match the FSDP only semantics
        flat_param.grad /= tp_world_size

    def _get_grads_as_flattened(
        self,
        model: FSDP,
        uses_tp: bool,
        param_name_to_numel: Dict[str, int],
        param_name_to_sharding_info: Dict[str, Tuple[torch.Size, int]],
        tp_pg: Optional[dist.ProcessGroup],
        fsdp_pg: Optional[dist.ProcessGroup],
        sharded_param_names: Optional[List[str]],
    ) -> torch.Tensor:
        """
        Returns all unsharded gradients as a single flattened tensor. This
        returns the same value on all ranks.
        """
        local_grads_as_flattened = (
            torch.cat([torch.flatten(param.grad) for param in model.parameters()])
            .contiguous()
            .cuda(self.rank)
        )
        all_grads_as_flattened = torch.cat(
            [torch.empty_like(local_grads_as_flattened) for _ in range(fsdp_pg.size())]
        ).contiguous()
        dist._all_gather_base(
            all_grads_as_flattened, local_grads_as_flattened, group=fsdp_pg
        )
        if not uses_tp:
            return all_grads_as_flattened
        splits = tuple(param_name_to_numel.values())
        all_grads_per_param = list(all_grads_as_flattened.split(splits))
        for param_idx, param_name in enumerate(
            param_name_to_numel.keys()
        ):  # assumes fixed order
            if param_name in sharded_param_names:
                local_tensor_size = list(param_name_to_sharding_info[param_name][0])
                sharding_dim = param_name_to_sharding_info[param_name][1]
                local_tensor_size[sharding_dim] //= tp_pg.size()
                local_tensor = all_grads_per_param[param_idx].view(*local_tensor_size)
                local_tensors = [
                    torch.empty_like(local_tensor) for _ in range(tp_pg.size())
                ]
                dist.all_gather(local_tensors, local_tensor, group=tp_pg)
                all_grads_per_param[param_idx] = torch.cat(
                    local_tensors, dim=sharding_dim
                ).reshape(-1)
        return torch.cat(all_grads_per_param).contiguous()

    @skip_if_lt_x_gpu(4)
    @parametrize("tensor_parallel_size", [2, 4])
    @parametrize(
        "cpu_offload",
        [CPUOffload(offload_params=False), CPUOffload(offload_params=True)],
    )
    def test_fsdp_tp_integration(self, tensor_parallel_size, cpu_offload):
        """
        Tests training for TP + FSDP integration by comparing an FSDP-only
        model with a TP + FSDP model.
        """
        LR = 3e-5
        torch.manual_seed(0)
        model = SimpleModel().cuda(self.rank)
        tp_fsdp_model = copy.deepcopy(model)
        sharded_param_names = SimpleModel.get_sharded_param_names()
        non_sharded_param_names = SimpleModel.get_non_sharded_param_names()
        (
            param_name_to_numel,
            param_name_to_sharding_info,
        ) = self._get_params_and_sharding_info(
            model,
            sharded_param_names,
            tensor_parallel_size,
        )

        input_seed = self.rank
        torch.manual_seed(input_seed + 1)
        inp_size = [2, 3, 5]
        inp = torch.rand(*inp_size).cuda(self.rank)
        self.assertEqual(model(inp), tp_fsdp_model(inp))  # sanity check

        tp_pg, fsdp_pg = self._get_sub_pgs(tensor_parallel_size)
        fsdp_model = FSDP(
            model, process_group=self.process_group, cpu_offload=cpu_offload
        )
        # Shard with TP and then wrap with FSDP
        sharding_specs = self._get_chunk_sharding_spec(tp_pg.size(), tp_pg)
        sharding_plan = SimpleModel.module_sharding_plan(sharding_specs)
        shard_module(tp_fsdp_model, sharding_plan, process_group=tp_pg)
        tp_fsdp_model = FSDP(
            tp_fsdp_model, process_group=fsdp_pg, cpu_offload=cpu_offload
        )

        # Check the forward by checking output equality
        fsdp_out = fsdp_model(inp)
        tp_fsdp_out = tp_fsdp_model(inp)
        self.assertEqual(fsdp_out, tp_fsdp_out)

        # Check the backward by checking gradient equality
        fsdp_out.sum().backward()
        tp_fsdp_out.sum().backward()
        self._sync_tp_grads(
            tp_fsdp_model,
            tp_pg,
            param_name_to_numel,
            non_sharded_param_names,
        )
        model_grads = self._get_grads_as_flattened(
            fsdp_model,
            False,
            param_name_to_numel,
            param_name_to_sharding_info,
            None,
            self.process_group,
            None,
        )
        model_tp_grads = self._get_grads_as_flattened(
            tp_fsdp_model,
            True,
            param_name_to_numel,
            param_name_to_sharding_info,
            tp_pg,
            fsdp_pg,
            sharded_param_names,
        )
        self.assertEqual(model_grads, model_tp_grads)

        # Check the optimizer step by performing a second forward pass
        fsdp_optim = torch.optim.SGD(fsdp_model.parameters(), lr=LR)
        tp_fsdp_optim = torch.optim.SGD(tp_fsdp_model.parameters(), lr=LR)
        fsdp_optim.step()
        tp_fsdp_optim.step()
        torch.manual_seed(input_seed + 16)
        inp = torch.rand(*inp_size).cuda(self.rank)
        fsdp_out = fsdp_model(inp)
        tp_fsdp_out = tp_fsdp_model(inp)
        self.assertEqual(fsdp_out, tp_fsdp_out)

    @skip_if_lt_x_gpu(4)
    def test_fsdp_tp_checkpoint_integration(self):
        """Tests checkpointing for TP + FSDP integration."""
        tensor_parallel_size = 2
        torch.manual_seed(0)
        model = SimpleModel().cuda(self.rank)
        tp_pg, fsdp_pg = self._get_sub_pgs(tensor_parallel_size)
        # Shard with TP and then wrap with FSDP
        sharding_specs = self._get_chunk_sharding_spec(tp_pg.size(), tp_pg)
        sharding_plan = SimpleModel.module_sharding_plan(sharding_specs)
        shard_module(model, sharding_plan, process_group=tp_pg)
        tp_fsdp_model = FSDP(model, process_group=fsdp_pg)

        # Check that we produce a nested ST from model state dict
        with FSDP.state_dict_type(tp_fsdp_model, StateDictType.SHARDED_STATE_DICT):
            state_dict = tp_fsdp_model.state_dict()
            # TODO once 2D is out, validate the nesting
            self.assertTrue(_is_nested_tensor(state_dict["net1.weight"]))
            self.assertFalse(_is_nested_tensor(state_dict["net1.bias"]))

        tp_fsdp_optim = torch.optim.Adam(tp_fsdp_model.parameters(), lr=0.0001)

        input_seed = self.rank
        torch.manual_seed(input_seed + 1)
        inp_size = [2, 3, 5]
        inp = torch.rand(*inp_size).cuda(self.rank)

        tp_fsdp_model(inp).sum().backward()
        tp_fsdp_optim.step()

        # Check that we produce a nested ST from optim state dict
        optim_state = FSDP.sharded_optim_state_dict(tp_fsdp_model, tp_fsdp_optim)
        # TODO once 2D is out, validate the nesting
        self.assertTrue(
            _is_nested_tensor(optim_state["state"]["net1.weight"]["exp_avg"])
        )
        self.assertFalse(
            _is_nested_tensor(optim_state["state"]["net1.bias"]["exp_avg"])
        )


instantiate_parametrized_tests(TestTPFSDPIntegration)

if __name__ == "__main__":
    run_tests()