1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
|
# Owner(s): ["oncall: distributed"]
import sys
from torch import distributed as dist
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
CUDAInitMode,
FSDPInitMode,
FSDPTest,
NestedWrappedModule,
)
from torch.testing._internal.common_utils import (
TEST_WITH_DEV_DBG_ASAN,
run_tests,
)
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
if TEST_WITH_DEV_DBG_ASAN:
print(
"Skip dev-asan as torch + multiprocessing spawn have known issues",
file=sys.stderr,
)
sys.exit(0)
class TestTraversal(FSDPTest):
@property
def world_size(self):
return 2
@skip_if_lt_x_gpu(2)
def test_fsdp_modules(self):
nested_wrapped_module = NestedWrappedModule.init(
self.process_group,
FSDPInitMode.RECURSIVE,
CUDAInitMode.CUDA_BEFORE,
)
modules = FSDP.fsdp_modules(nested_wrapped_module)
self.assertEquals(
modules, [
nested_wrapped_module.module.get_submodule("1"),
nested_wrapped_module.module.get_submodule("1").get_submodule("0"),
nested_wrapped_module.module.get_submodule("2"),
]
)
modules = FSDP.fsdp_modules(nested_wrapped_module, root_only=True)
self.assertEqual(
modules, [
nested_wrapped_module.module.get_submodule("1"),
nested_wrapped_module.module.get_submodule("2"),
]
)
if __name__ == "__main__":
run_tests()
|