File: test_shard_utils.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (205 lines) | stat: -rw-r--r-- 7,089 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# Owner(s): ["oncall: distributed"]

import torch
from torch.distributed._shard.sharded_tensor import (
    init_from_local_shards,
    Shard,
    ShardMetadata,
)
from torch.distributed._shard.sharding_spec import (
    ChunkShardingSpec,
    EnumerableShardingSpec,
)
from torch.distributed.distributed_c10d import _get_default_group
from torch.distributed.fsdp._shard_utils import (
    _create_chunk_sharded_tensor,
    _offsets_to_split_sizes,
    _reshard_flatten_tensor,
)
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import FSDPTest
from torch.testing._internal.common_utils import TestCase


class TestShardUtils(TestCase):
    def test_offsets_to_split_sizes(self):
        tensor_numel = 40

        def _get_and_check_split_sizes(
            world_size,
            in_offsets,
            out_offsets,
            in_split_sizes,
        ):

            for my_rank in range(world_size):
                _in_split_sizes = in_split_sizes[my_rank]
                _out_split_sizes = [
                    in_split_sizes[i][my_rank] for i in range(world_size)
                ]
                res_in_split_sizes, res_out_split_sizes = _offsets_to_split_sizes(
                    in_offsets, out_offsets, tensor_numel, world_size, my_rank
                )
                self.assertEqual(_in_split_sizes, res_in_split_sizes)
                self.assertEqual(_out_split_sizes, res_out_split_sizes)

        # The tensor size can be evenly divided by the world size.
        world_size = 4
        in_offsets = [0, 10, 20, 30]
        out_offsets = [0, 10, 20, 30]
        in_split_sizes = [
            [10, 0, 0, 0],
            [0, 10, 0, 0],
            [0, 0, 10, 0],
            [0, 0, 0, 10],
        ]
        _get_and_check_split_sizes(world_size, in_offsets, out_offsets, in_split_sizes)

        world_size = 4
        in_offsets = [0, 3, 17, 18]
        out_offsets = [0, 10, 20, 30]
        in_split_sizes = [
            [3, 0, 0, 0],
            [7, 7, 0, 0],
            [0, 1, 0, 0],
            [0, 2, 10, 10],
        ]
        _get_and_check_split_sizes(world_size, in_offsets, out_offsets, in_split_sizes)

        world_size = 4
        in_offsets = [0, 10, 20, 30]
        out_offsets = [0, 3, 17, 18]
        in_split_sizes = [
            [3, 7, 0, 0],
            [0, 7, 1, 2],
            [0, 0, 0, 10],
            [0, 0, 0, 10],
        ]
        _get_and_check_split_sizes(world_size, in_offsets, out_offsets, in_split_sizes)

        world_size = 4
        in_offsets = [0, 7, 11, 25]
        out_offsets = [0, 10, 17, 18]
        in_split_sizes = [
            [7, 0, 0, 0],
            [3, 1, 0, 0],
            [0, 6, 1, 7],
            [0, 0, 0, 15],
        ]
        _get_and_check_split_sizes(world_size, in_offsets, out_offsets, in_split_sizes)

        # The tensor size cannot be evenly divided by the world size.
        world_size = 6
        in_offsets = [0, 7, 14, 21, 28, 35]
        out_offsets = [0, 7, 14, 21, 28, 35]
        in_split_sizes = [
            [7, 0, 0, 0, 0, 0],
            [0, 7, 0, 0, 0, 0],
            [0, 0, 7, 0, 0, 0],
            [0, 0, 0, 7, 0, 0],
            [0, 0, 0, 0, 7, 0],
            [0, 0, 0, 0, 0, 5],
        ]
        _get_and_check_split_sizes(world_size, in_offsets, out_offsets, in_split_sizes)

        world_size = 6
        in_offsets = [0, 0, 10, 11, 28, 40]
        out_offsets = [0, 7, 14, 21, 28, 35]
        in_split_sizes = [
            [0, 0, 0, 0, 0, 0],
            [7, 3, 0, 0, 0, 0],
            [0, 1, 0, 0, 0, 0],
            [0, 3, 7, 7, 0, 0],
            [0, 0, 0, 0, 7, 5],
            [0, 0, 0, 0, 0, 0],
        ]
        _get_and_check_split_sizes(world_size, in_offsets, out_offsets, in_split_sizes)


class TestShardUtilsDistributed(FSDPTest):
    @property
    def world_size(self):
        return 2

    def _create_local_chunk(self, tensor):
        chunk = tensor.chunk(2)[self.rank]
        offsets = [0] if self.rank == 0 else [tensor.shape[0] - chunk.shape[0]]
        shard = Shard.from_tensor_and_offsets(chunk, offsets, self.rank)
        return init_from_local_shards([shard], tensor.numel())

    def _create_enumerate_spec(self, tensor):
        # Since placement is not used, always set placement to rank0 to mimic
        # the actual usage.
        metadata = [
            ShardMetadata([0], [101], placement="rank0/cuda:0"),
            ShardMetadata([101], [900], placement="rank0/cuda:0"),
        ]
        return EnumerableShardingSpec(metadata)

    def _create_chunk_spec(self):
        return ChunkShardingSpec(dim=0, placements=["rank0/cuda:0"])

    def _create_tensor(self, *size):
        # Keep everything deterministic.
        torch.manual_seed(0)
        return torch.rand(*size).cuda()

    @skip_if_lt_x_gpu(2)
    def test_reshard_flatten_tensor(self):
        def get_offsets(tensor, shard):
            if self.rank == 0:
                return [0]
            else:
                return [tensor.shape[0] - shard.shape[0]]

        tensor = self._create_tensor(1001)

        shard = _reshard_flatten_tensor(
            self._create_local_chunk(tensor),
            self._create_enumerate_spec(tensor),
            self.world_size,
            self.rank,
            tensor.device,
            _get_default_group(),
        )
        offsets = [0] if self.rank == 0 else [tensor.shape[0] - shard.shape[0]]
        shard = Shard.from_tensor_and_offsets(shard, offsets, self.rank)
        uneven_sharded_tensor = init_from_local_shards([shard], tensor.numel())

        shard = _reshard_flatten_tensor(
            uneven_sharded_tensor,
            self._create_chunk_spec(),
            self.world_size,
            self.rank,
            tensor.device,
            _get_default_group(),
        )
        offsets = [0] if self.rank == 0 else [tensor.shape[0] - shard.shape[0]]
        shard = Shard.from_tensor_and_offsets(shard, offsets, self.rank)
        even_sharded_tensor = init_from_local_shards([shard], tensor.numel())

        output = torch.empty(tensor.shape).cuda() if self.rank == 0 else None
        even_sharded_tensor.gather(0, output)
        if self.rank == 0:
            self.assertEqual(tensor, output)
        output = torch.empty(tensor.shape).cuda() if self.rank == 0 else None
        uneven_sharded_tensor.gather(0, output)
        if self.rank == 0:
            self.assertEqual(tensor, output)

    @skip_if_lt_x_gpu(2)
    def test_create_chunk_sharded_tensor(self):
        for size in ((1,), (1, 6), (12,), (12, 6), (25,), (25, 6)):
            tensor = self._create_tensor(*size)

            sharded_tensor = _create_chunk_sharded_tensor(
                tensor,
                self.rank,
                self.world_size,
                torch.cuda.device_count(),
                _get_default_group(),
            )
            output = torch.empty(*size).cuda() if self.rank == 0 else None
            sharded_tensor.gather(0, output)
            if self.rank == 0:
                self.assertEqual(tensor, output)