File: test_wrap.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (602 lines) | stat: -rw-r--r-- 24,301 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
# Owner(s): ["oncall: distributed"]

import functools
import os
import tempfile
import unittest
from enum import Enum, auto

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed.fsdp.fully_sharded_data_parallel import (
    BackwardPrefetch,
    CPUOffload,
)
from torch.distributed.fsdp.fully_sharded_data_parallel import (
    FullyShardedDataParallel as FSDP,
)
from torch.distributed.fsdp.wrap import (
    _or_policy,
    _wrap_batchnorm_individually,
    always_wrap_policy,
    enable_wrap,
    size_based_auto_wrap_policy,
    transformer_auto_wrap_policy,
    wrap,
)
from torch.nn import TransformerDecoderLayer, TransformerEncoderLayer
from torch.testing._internal.common_distributed import skip_if_lt_x_gpu
from torch.testing._internal.common_fsdp import (
    CUDAInitMode,
    DummyProcessGroup,
    FSDPInitMode,
    FSDPTest,
    TransformerWithSharedParams,
    _maybe_cuda,
)
from torch.testing._internal.common_utils import (
    FILE_SCHEMA,
    TestCase,
    find_free_port,
    instantiate_parametrized_tests,
    parametrize,
    run_tests,
)


class BatchNormNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.lin = nn.Linear(10, 10, bias=False)
        self.bn1 = nn.BatchNorm1d(10)
        self.bn2 = nn.BatchNorm2d(10)
        self.bn3 = nn.BatchNorm3d(10)
        self.sync_bn = nn.SyncBatchNorm(10)

class WrapMethod(Enum):
    FSDP_CTOR = auto()
    # FSDP_CTOR is the supported way forward, but keep WRAP_API in case we miss
    # any use cases and fix them to work with FSDP_CTOR over time.
    WRAP_API = auto()




class TestFSDPWrap(FSDPTest):
    """
    Tests main API for wrapping FSDP, which is to pass auto_wrap_policy into
    FSDP constructor.
    """

    def setUp(self) -> None:
        super().setUp()

    class NestedSequentialModel:
        @staticmethod
        def get_model(cuda=True):
            sequential = nn.Sequential(
                nn.Linear(5, 5),
                nn.Linear(5, 5),
                nn.Sequential(nn.Linear(5, 5), nn.Linear(5, 5)),
            )
            if cuda:
                sequential = sequential.cuda()
            return sequential

        @staticmethod
        def verify_model_all_wrapped(cls, model):
            cls.assertTrue(isinstance(model, FSDP))
            cls.assertTrue(isinstance(model.module[0], FSDP))
            cls.assertTrue(isinstance(model.module[1], FSDP))
            cls.assertTrue(isinstance(model.module[2], FSDP))
            cls.assertTrue(isinstance(model.module[2].module[0], FSDP))
            cls.assertTrue(isinstance(model.module[2].module[1], FSDP))

        @staticmethod
        def verify_model(cls, model):
            cls.assertTrue(isinstance(model, FSDP))
            cls.assertTrue(isinstance(model.module[0], nn.Linear))
            cls.assertTrue(isinstance(model.module[1], nn.Linear))
            cls.assertTrue(isinstance(model.module[2], FSDP))
            # following modules were not wrapped by the policy.
            cls.assertTrue(isinstance(model.module[2].module[0], nn.Linear))
            cls.assertTrue(isinstance(model.module[2].module[1], nn.Linear))

    def _get_linear(self, fin, fout):
        return nn.Linear(fin, fout, bias=False)

    def _get_already_wrapped_fsdp(
        self, cuda_init_mode=CUDAInitMode.CUDA_BEFORE, nested=False
    ) -> FSDP:
        fn_self = self

        class MyModel(nn.Module):
            def __init__(self, nested):
                super().__init__()
                # TODO: test the various init modes.
                move_to_cuda = cuda_init_mode == CUDAInitMode.CUDA_BEFORE
                # if nested=True, the FSDP module will be nested one layer deep
                # and we should pick that up.
                if nested:
                    self.lin1 = nn.Sequential(
                        _maybe_cuda(fn_self._get_linear(1, 1), move_to_cuda),
                        FSDP(_maybe_cuda(fn_self._get_linear(1, 1), move_to_cuda)),
                    )
                else:
                    self.lin1 = FSDP(
                        _maybe_cuda(fn_self._get_linear(1, 1), move_to_cuda)
                    )
                self.lin2 = FSDP(_maybe_cuda(fn_self._get_linear(1, 1), move_to_cuda))
                self.lin3 = FSDP(_maybe_cuda(fn_self._get_linear(1, 1), move_to_cuda))

            def forward(self, input: torch.Tensor) -> torch.Tensor:
                return self.lin3(self.lin2(self.lin1(input)))

        model = MyModel(nested=nested)
        return model

    @skip_if_lt_x_gpu(2)
    @parametrize("nested", [True, False])
    @parametrize("cuda_init_mode", [CUDAInitMode.CUDA_AFTER, CUDAInitMode.CUDA_BEFORE])
    def test_error_already_wrapped(self, nested, cuda_init_mode):
        """
        Test that an error is raised if we attempt to wrap when submodules are
        already FSDP.
        """
        wrapped_fsdp = self._get_already_wrapped_fsdp(nested=nested, cuda_init_mode=cuda_init_mode)
        if cuda_init_mode == CUDAInitMode.CUDA_AFTER:
            wrapped_fsdp = wrapped_fsdp.cuda()

        with self.assertRaisesRegex(ValueError, "to NOT be FullyShardedDataParallel"):
            mod = FSDP(wrapped_fsdp, auto_wrap_policy=size_based_auto_wrap_policy)

    @skip_if_lt_x_gpu(2)
    @parametrize("use_or_policy", [True, False])
    def test_wrap_batchnorm_individually(self, use_or_policy):
        def never_wrap_policy(*args, **kwargs):
            return False

        policy = (
            functools.partial(
                _or_policy,
                policies=[never_wrap_policy, _wrap_batchnorm_individually]
            ) if use_or_policy else _wrap_batchnorm_individually
        )
        model = BatchNormNet()
        fsdp = FSDP(model, auto_wrap_policy=policy)
        # Batchnorms should be wrapped
        for layer in [fsdp.bn1, fsdp.bn2, fsdp.bn3, fsdp.sync_bn]:
            self.assertTrue(isinstance(layer, FSDP))

        self.assertFalse(isinstance(fsdp.lin, FSDP))

    @skip_if_lt_x_gpu(2)
    def test_bn_always_wrapped_individually(self):
        """
        Ensures that by using _or_policy with _wrap_batchnorm_individually, even
        if the other policy results in a module containing a BN unit being
        wrapped, the contained BN unit will still be individually wrapped.
        """
        class MyModule(nn.Module):
            def __init__(self):
                super().__init__()
                self.bn_container = BatchNormNet()

        def wrap_bn_container(module, recurse, *args, **kwargs):
            if recurse:
                return True
            return isinstance(module, BatchNormNet)

        my_policy = functools.partial(
            _or_policy,
            policies=[wrap_bn_container, _wrap_batchnorm_individually]
        )
        mod = MyModule()
        fsdp = FSDP(mod, auto_wrap_policy=my_policy)

        # Wrapping should be FSDP(FSDP(BatchNormNet(FSDP(BN))))
        # and not FSDP(FSDP(BatchNormNet(BN))) (in the latter the inner
        # BN is not individually wrapped.)

        for bn in [
            fsdp.bn_container.bn1,
            fsdp.bn_container.bn2,
            fsdp.bn_container.bn3,
            fsdp.bn_container.sync_bn
        ]:
            self.assertTrue(isinstance(bn, FSDP))

        # if we just wrapped BN container, individual batchnorms are not
        # wrapped.
        mod = MyModule()
        fsdp = FSDP(mod, auto_wrap_policy=wrap_bn_container)
        self.assertTrue(isinstance(mod.bn_container, FSDP))
        for bn in [
            fsdp.bn_container.bn1,
            fsdp.bn_container.bn2,
            fsdp.bn_container.bn3,
            fsdp.bn_container.sync_bn
        ]:
            self.assertFalse(isinstance(bn, FSDP))

    @skip_if_lt_x_gpu(2)
    @parametrize(
        "cpu_offload",
        [CPUOffload(offload_params=False), CPUOffload(offload_params=True)]
    )
    @parametrize(
        "backward_prefetch",
        [BackwardPrefetch.BACKWARD_POST, BackwardPrefetch.BACKWARD_PRE]
    )
    @parametrize("forward_prefetch", [False, True])
    @parametrize(
        "cuda_init_mode",
        [CUDAInitMode.CUDA_AFTER, CUDAInitMode.CUDA_BEFORE]
    )
    def test_main_wrap_api(
        self,
        cpu_offload: CPUOffload,
        backward_prefetch: BackwardPrefetch,
        forward_prefetch: bool,
        cuda_init_mode: CUDAInitMode,
    ):
        if cuda_init_mode == CUDAInitMode.CUDA_AFTER and cpu_offload.offload_params:
            # they don't work together, expected
            return

        move_to_cuda = cuda_init_mode == CUDAInitMode.CUDA_BEFORE

        class Nested(nn.Module):
            def __init__(self):
                super().__init__()
                self.nested_lin = _maybe_cuda(nn.Linear(1, 1, bias=False), move_to_cuda)

            def forward(self, input):
                return self.nested_lin(input)

        class MyModel(nn.Module):
            def __init__(self):
                super().__init__()
                self.lin1 = _maybe_cuda(nn.Linear(1, 1, bias=False), move_to_cuda)
                self.lin2 = _maybe_cuda(nn.Linear(1, 1, bias=False), move_to_cuda)
                self.lin3 = _maybe_cuda(nn.Linear(1, 1, bias=False), move_to_cuda)
                self.lin4 = Nested()

            def forward(self, input):
                return self.lin4(self.lin3(self.lin2(self.lin1(input))))

        model = MyModel()
        wrapped_model = FSDP(
            model,
            auto_wrap_policy=functools.partial(
                size_based_auto_wrap_policy,
                min_num_params=0,  # wrap all modules
            ),
            cpu_offload=cpu_offload,
            backward_prefetch=backward_prefetch,
            forward_prefetch=forward_prefetch,
        )
        if cuda_init_mode == CUDAInitMode.CUDA_AFTER:
            wrapped_model = wrapped_model.cuda()

        modules_in_fsdp_graph_order = [
            wrapped_model.module.lin1,
            wrapped_model.module.lin2,
            wrapped_model.module.lin3,
            wrapped_model.module.lin4.module.nested_lin,
            wrapped_model.module.lin4,
            wrapped_model
        ]

        for module in modules_in_fsdp_graph_order:
            self.assertTrue(isinstance(module, FSDP))
            self._check_cpu_offload(module, cpu_offload)
            self._check_backward_prefetch(module, backward_prefetch)
            self._check_forward_prefetch(module, forward_prefetch)

        # Run model a few times for sanity check.
        optim = torch.optim.SGD(wrapped_model.parameters(), lr=1e-2, momentum=0.9)
        inp = torch.ones(1).cuda()
        for _ in range(6):
            optim.zero_grad()
            loss = wrapped_model(inp).sum()
            loss.backward()
            optim.step()


class TestAutoWrap(TestCase):
    def setUp(self) -> None:
        super().setUp()
        # For all the tests here, we use a fake group
        self.process_group = DummyProcessGroup(rank=0, size=1)

    @unittest.skipIf(torch.cuda.device_count() < 2, "Requires at least 2 GPUs")
    @parametrize("wrap_method", [WrapMethod.FSDP_CTOR, WrapMethod.WRAP_API])
    def test_wrap(self, wrap_method):
        if wrap_method == WrapMethod.WRAP_API:
            with enable_wrap(wrapper_cls=FSDP, process_group=self.process_group):
                layer = wrap(nn.Linear(5, 5))
        else:
            assert wrap_method == WrapMethod.FSDP_CTOR
            layer = FSDP(
                nn.Linear(5, 5),
                process_group=self.process_group,
                auto_wrap_policy=functools.partial(size_based_auto_wrap_policy, min_num_params=1)
            )
        self.assertTrue(isinstance(layer, FSDP))
        self.assertEqual(layer.rank, self.process_group.rank())
        self.assertEqual(layer.world_size, self.process_group.size())

    @unittest.skipIf(torch.cuda.device_count() < 2, "Requires at least 2 GPUs")
    def test_wrap_disabled_outside_context(self):
        pg = self.process_group

        class MyModel(nn.Module):
            def __init__(self):
                super().__init__()
                self.lin = wrap(nn.Linear(5, 5), process_group=pg)

        model = MyModel()
        with enable_wrap(wrapper_cls=FSDP, process_group=pg):
            model = wrap(model)

        self.assertTrue(isinstance(model, FSDP))
        self.assertFalse(isinstance(model.lin, FSDP))
        self.assertTrue(isinstance(model.lin, nn.Linear))

    @unittest.skipIf(torch.cuda.device_count() < 2, "Requires at least 2 GPUs")
    def test_wrap_override_defaults(self):
        new_process_group = DummyProcessGroup(rank=0, size=2)
        with enable_wrap(wrapper_cls=FSDP, process_group=self.process_group):
            layer = wrap(nn.Linear(5, 5), process_group=new_process_group)
        self.assertTrue(isinstance(layer, FSDP))
        self.assertTrue(layer.process_group is new_process_group)
        self.assertEqual(layer.rank, 0)
        self.assertEqual(layer.world_size, 2)

    @unittest.skipIf(not torch.cuda.is_available(), "Test Requires CUDA")
    def test_always_wrap(self):
        """
        Test to ensure that if `always_wrap_policy` is
        passed into FSDP, all submodules are wrapped.
        """
        seq = TestFSDPWrap.NestedSequentialModel.get_model(cuda=True)
        model = FSDP(seq, process_group=self.process_group, auto_wrap_policy=always_wrap_policy)
        TestFSDPWrap.NestedSequentialModel.verify_model_all_wrapped(self, model)

    @unittest.skipIf(torch.cuda.device_count() < 2, "Requires at least 2 GPUs")
    def test_transformer_auto_wrap_policy(self):
        """Tests the ``transformer_auto_wrap_policy``."""
        auto_wrap_policy = functools.partial(
            transformer_auto_wrap_policy,
            transformer_layer_cls={TransformerEncoderLayer, TransformerDecoderLayer},
        )
        fsdp_kwargs = {"auto_wrap_policy": auto_wrap_policy}
        fsdp_model = TransformerWithSharedParams.init(
            self.process_group,
            FSDPInitMode.RECURSIVE,
            CUDAInitMode.CUDA_BEFORE,
            fsdp_kwargs,
        )
        modules = list(fsdp_model.modules())
        encoder_layers = set(fsdp_model.module.transformer.encoder.layers)
        decoder_layers = set(fsdp_model.module.transformer.decoder.layers)
        for module in modules:
            if module is fsdp_model or module in encoder_layers or module in decoder_layers:
                self.assertTrue(isinstance(module, FSDP))
            else:
                self.assertFalse(isinstance(module, FSDP))

    @unittest.skipIf(torch.cuda.device_count() < 2, "Requires at least 2 GPUs")
    def test_auto_wrap_api(self):
        """
        Test to ensure with auto wrap, we wrap child modules correctly based on the min_num_params.
        ``nn.Linear(5, 5)`` does not exceed the bucket size, but combined they do.
        """
        sequential = TestFSDPWrap.NestedSequentialModel.get_model(cuda=False)
        my_auto_wrap_policy = functools.partial(
            size_based_auto_wrap_policy, min_num_params=40
        )
        model = FSDP(
            sequential,
            process_group=self.process_group,
            auto_wrap_policy=my_auto_wrap_policy
        )

        TestFSDPWrap.NestedSequentialModel.verify_model(self, model)

    @unittest.skipIf(torch.cuda.device_count() < 2, "Requires at least 2 GPUs")
    def test_auto_wrap_preset_exclude_wrap(self):
        """
        Test to ensure excluded modules are not wrapped, regardless if the total param size is greater than the
        min_num_params. the size_based_auto_wrap_policy excludes wrapping for {nn.ModuleList, nn.ModuleDict}
        """
        sequential = nn.ModuleList([nn.Linear(5, 5), nn.Linear(5, 5)])
        my_auto_wrap_policy = functools.partial(
            size_based_auto_wrap_policy, min_num_params=40
        )

        model = FSDP(
            sequential,
            process_group=self.process_group,
            auto_wrap_policy=my_auto_wrap_policy
        )

        self.assertTrue(isinstance(model, FSDP))
        self.assertTrue(isinstance(model[0], nn.Linear))
        self.assertTrue(isinstance(model[1], nn.Linear))

    @unittest.skipIf(torch.cuda.device_count() < 2, "Requires at least 2 GPUs")
    def test_auto_wrap_preset_exclude_wrap_include_children(self):
        """
        Test to ensure excluded modules are not wrapped, but children are if param size is greater than
        min_num_params
        """
        sequential = nn.ModuleList([nn.Linear(10, 10)])
        my_auto_wrap_policy = functools.partial(
            size_based_auto_wrap_policy, min_num_params=40
        )
        model = FSDP(sequential, process_group=self.process_group, auto_wrap_policy=my_auto_wrap_policy)

        self.assertTrue(isinstance(model, FSDP))
        self.assertTrue(isinstance(model[0], FSDP))

    @unittest.skipIf(torch.cuda.device_count() < 2, "Requires at least 2 GPUs")
    def test_auto_wrap_preset_force_leaf(self):
        """
        Test to ensure force-leaf modules are not wrapped, and children are not wrapped. The
        size_based_auto_wrap_policy forces leaf modules of type {nn.MultiheadAttention} to not be wrapped
        """
        sequential = nn.Sequential(nn.Linear(10, 10), nn.MultiheadAttention(100, 1))
        my_auto_wrap_policy = functools.partial(
            size_based_auto_wrap_policy, min_num_params=40
        )
        model = FSDP(sequential, process_group=self.process_group, auto_wrap_policy=my_auto_wrap_policy)
        self.assertTrue(isinstance(model.module[0], FSDP))
        # Assert children of multihead attention are not wrapped
        self.assertTrue(isinstance(model.module[1], nn.MultiheadAttention))
        self.assertTrue(isinstance(model.module[1].out_proj, nn.Linear))

    @unittest.skipIf(torch.cuda.device_count() < 2, "Requires at least 2 GPUs")
    def test_auto_wrap_preset_force_leaf_custom(self):
        """
        Test to ensure force-leaf modules are not wrapped.
        """
        my_auto_wrap_policy = functools.partial(
            size_based_auto_wrap_policy,
            min_num_params=40,
            force_leaf_modules=size_based_auto_wrap_policy.FORCE_LEAF_MODULES.union(
                {nn.Linear}
            ),
        )
        sequential = nn.Sequential(
            nn.Linear(10, 10), nn.ModuleList([nn.Linear(10, 10)])
        )
        model = FSDP(sequential, process_group=self.process_group, auto_wrap_policy=my_auto_wrap_policy)
        # Model was wrapped in FSDP as no inner modules were wrapped.
        self.assertTrue(isinstance(model, FSDP))
        self.assertTrue(isinstance(model.module[0], nn.Linear))
        self.assertTrue(isinstance(model.module[1], nn.ModuleList))

    @unittest.skipIf(not torch.cuda.is_available(), "Test Requires CUDA")
    @parametrize("cuda_init_mode", [CUDAInitMode.CUDA_BEFORE, CUDAInitMode.CUDA_AFTER])
    @parametrize(
        "cpu_offload",
        [CPUOffload(offload_params=False), CPUOffload(offload_params=True)]
    )
    @parametrize("use_device_id", [True, False])
    def test_auto_wrap_smoke_test(self, cuda_init_mode, cpu_offload, use_device_id):
        # CPU offload and CUDA after don't work together as expected.
        if (
            cpu_offload.offload_params and cuda_init_mode == CUDAInitMode.CUDA_AFTER
        ):
            return

        device = torch.device("cuda")
        torch.cuda.set_device(0)
        device_id = (
            torch.device("cuda", torch.cuda.current_device()) if use_device_id else None
        )

        # Random port in case the next test run quickly, same port would cause conflict.
        os.environ["MASTER_ADDR"] = "localhost"
        os.environ["MASTER_PORT"] = str(find_free_port())

        file_name = tempfile.NamedTemporaryFile(delete=False).name
        torch.distributed.init_process_group(
            backend="nccl",
            init_method=f"{FILE_SCHEMA}_{file_name}",
            rank=0,
            world_size=1,
        )

        # NOTE: We move model to CUDA after init with FSDP to simulate real use
        # cases where full model cannot be loaded onto GPU, but their shards can.
        cuda_after_init = cuda_init_mode == CUDAInitMode.CUDA_AFTER
        try:
            sequential = TestFSDPWrap.NestedSequentialModel.get_model(cuda=(not cuda_after_init))
            my_auto_wrap_policy = functools.partial(
                size_based_auto_wrap_policy, min_num_params=40
            )
            model = FSDP(
                sequential, cpu_offload=cpu_offload, auto_wrap_policy=my_auto_wrap_policy, device_id=device_id
            )
            TestFSDPWrap.NestedSequentialModel.verify_model(self, model)
            if cuda_after_init:
                model = model.cuda()
            input = torch.rand((1, 5), dtype=torch.float).to(device)
            output = model(input)
            loss = F.mse_loss(input, output)
            loss.backward()
        finally:
            torch.distributed.destroy_process_group()

        try:
            os.remove(file_name)
        except FileNotFoundError:
            pass

    @unittest.skipIf(torch.cuda.device_count() < 2, "Requires at least 2 GPUs")
    @parametrize("wrap_method", [WrapMethod.FSDP_CTOR, WrapMethod.WRAP_API])
    def test_always_wrap_with_ignored_modules(self, wrap_method: WrapMethod):
        sequential = TestFSDPWrap.NestedSequentialModel.get_model(cuda=False)
        ignored_modules = [sequential[1], sequential[2][0]]
        fsdp_kwargs = {
            "process_group": self.process_group,
            "auto_wrap_policy": always_wrap_policy,
            "ignored_modules": ignored_modules,
        }
        if wrap_method == WrapMethod.FSDP_CTOR:
            model = FSDP(sequential, **fsdp_kwargs)
        elif wrap_method == WrapMethod.WRAP_API:
            with enable_wrap(wrapper_cls=FSDP, **fsdp_kwargs):
                model = wrap(sequential)
        else:
            assert 0, f"Unsupported wrap method: {wrap_method}"
        # All non-ignored modules should be wrapped with FSDP
        self.assertTrue(isinstance(model, FSDP))
        self.assertTrue(isinstance(model.module[0], FSDP))
        self.assertTrue(isinstance(model.module[1], nn.Linear))
        self.assertTrue(isinstance(model.module[2], FSDP))
        self.assertTrue(isinstance(model.module[2].module[0], nn.Linear))
        self.assertTrue(isinstance(model.module[2].module[1], FSDP))

    @unittest.skipIf(torch.cuda.device_count() < 2, "Requires at least 2 GPUs")
    @parametrize("wrap_method", [WrapMethod.FSDP_CTOR, WrapMethod.WRAP_API])
    def test_auto_wrap_with_ignored_modules(self, wrap_method: WrapMethod):
        sequential = TestFSDPWrap.NestedSequentialModel.get_model(cuda=False)
        ignored_modules = [sequential[1], sequential[2][0]]
        my_auto_wrap_policy = functools.partial(
            size_based_auto_wrap_policy, min_num_params=40,
        )
        fsdp_kwargs = {
            "process_group": self.process_group,
            "auto_wrap_policy": my_auto_wrap_policy,
            "ignored_modules": ignored_modules,
        }
        if wrap_method == WrapMethod.FSDP_CTOR:
            model = FSDP(sequential, **fsdp_kwargs)
        elif wrap_method == WrapMethod.WRAP_API:
            with enable_wrap(wrapper_cls=FSDP, **fsdp_kwargs):
                model = wrap(sequential)
        else:
            assert 0, f"Unsupported wrap method: {wrap_method}"
        # Since the 2nd linear (`sequential[1]`) is ignored, the wrapping
        # policy does not exceed the parameter threshold before the inner
        # sequential (`sequential[2]`) anymore; hence, it flattens
        # `sequential[0]` and `sequential[2][0]` into `model` and leaves
        # `sequential[1]` and `sequential[2][1]` as-is since they are ignored
        self.assertTrue(isinstance(model, FSDP))
        self.assertTrue(isinstance(model.module[0], nn.Linear))
        self.assertTrue(isinstance(model.module[1], nn.Linear))
        self.assertTrue(isinstance(model.module[2], nn.Sequential))
        self.assertTrue(isinstance(model.module[2][0], nn.Linear))
        self.assertTrue(isinstance(model.module[2][1], nn.Linear))


instantiate_parametrized_tests(TestFSDPWrap)
instantiate_parametrized_tests(TestAutoWrap)

if __name__ == "__main__":
    run_tests()