1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
|
# Owner(s): ["oncall: distributed"]
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
import copy
import os
import sys
import unittest
from contextlib import suppress
from typing import Any, List, cast
import numpy as np
import torch
import torch.distributed as dist
if not dist.is_available():
print("Distributed not available, skipping tests", file=sys.stderr)
sys.exit(0)
from torch.distributed.algorithms.ddp_comm_hooks.ddp_zero_hook import (
hook_with_zero_step,
hook_with_zero_step_interleaved,
)
from torch.distributed.algorithms.ddp_comm_hooks.default_hooks import (
allreduce_hook,
)
from torch.distributed.algorithms.join import Join, Joinable, JoinHook
from torch.distributed.optim import ZeroRedundancyOptimizer
from torch.distributed.optim.zero_redundancy_optimizer import _broadcast_object
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import SGD, AdamW
from torch.testing._internal import common_distributed
from torch.testing._internal.common_utils import (
IS_WINDOWS,
TEST_WITH_ASAN,
TEST_WITH_DEV_DBG_ASAN,
instantiate_parametrized_tests,
parametrize,
run_tests,
)
try:
import torchvision
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
# Use GLOO on GPU when running CUDA + Windows
def _get_backend_for_tests():
return (
dist.Backend.NCCL if not IS_WINDOWS and torch.cuda.is_available()
# Windows only has GLOO, but GLOO GPU works. And use GLOO CPU when
# no GPUs are available.
else dist.Backend.GLOO
)
BACKEND = _get_backend_for_tests()
@unittest.skipIf(
TEST_WITH_ASAN or TEST_WITH_DEV_DBG_ASAN, "CUDA + ASAN does not work."
)
class TestZeroRedundancyOptimizer(common_distributed.MultiProcessTestCase):
def setUp(self):
super(TestZeroRedundancyOptimizer, self).setUp()
os.environ["WORLD_SIZE"] = str(self.world_size)
self._spawn_processes()
@property
def device(self):
return torch.device("cuda") if torch.cuda.is_available() \
else torch.device("cpu")
@property
def world_size(self):
return 1
def tearDown(self):
try:
torch.distributed.destroy_process_group()
except AssertionError:
pass
try:
os.remove(self.file_name)
except OSError:
pass
def dist_init(self, rank, world_size=-1, backend=BACKEND):
if (world_size < 1):
world_size = self.world_size
store = dist.FileStore(self.file_name, world_size)
return dist.init_process_group(
backend=backend, store=store, rank=rank, world_size=world_size,
)
# TODO: sandcastle_skip_if does not work here.
@unittest.skipIf(
TEST_WITH_ASAN or TEST_WITH_DEV_DBG_ASAN, "CUDA + ASAN does not work."
)
class TestZeroRedundancyOptimizerSingleRank(TestZeroRedundancyOptimizer):
def test_state_dict(self):
"""Check that ZeroRedundancyOptimizer exposes the expected state dict
interface, irrespective of the sharding."""
self.dist_init(self.rank)
LR1 = 0.1
LR2 = 0.01
MOMENTUM = 0.9
RECIPIENT_RANK = 0 # rank 0 is the only rank since the world size is 1
x = torch.tensor([1.0], device=self.device, requires_grad=True)
o = ZeroRedundancyOptimizer(
[x], optimizer_class=SGD, lr=LR1, momentum=MOMENTUM,
)
x.backward()
o.step()
self.assertEqual(x, torch.tensor([0.9], device=self.device))
self.assertEqual(
o.optim.state[x]["momentum_buffer"],
torch.tensor([1.0], device=self.device),
)
o.zero_grad()
o.consolidate_state_dict(to=RECIPIENT_RANK)
state_dict = o.state_dict()
# Check that the state dict has keys compliant with PyTorch
self.assertIn("param_groups", state_dict.keys())
self.assertIn("state", state_dict.keys())
# Check that the state has the expected keys
self.assertEqual(state_dict["param_groups"][0]["lr"], 0.1)
self.assertEqual(state_dict["param_groups"][0]["momentum"], 0.9)
self.assertFalse(state_dict["param_groups"][0]["nesterov"])
self.assertEqual(state_dict["param_groups"][0]["weight_decay"], 0.0)
self.assertEqual(state_dict["param_groups"][0]["dampening"], 0.0)
# Check that the state and the `param_groups` attribute are in sync
for k in state_dict["param_groups"][0]:
if k != "params":
self.assertEqual(
state_dict["param_groups"][0][k],
o.param_groups[0][k],
)
# Check that the state is reloaded with the correct values and device
o = ZeroRedundancyOptimizer([x], optimizer_class=SGD, lr=LR2)
o.load_state_dict(state_dict)
self.assertEqual(
o.optim.state[x]["momentum_buffer"],
torch.tensor([1.0], device=self.device),
)
# We should we using `LR1` and not `LR2` after reloading, both within
# the optimizer and as exposed by the `param_groups` attribute
self.assertEqual(o.param_groups[0]["lr"], LR1)
x.backward()
o.step()
self.assertEqual(x, torch.tensor([0.71], device=self.device))
self.assertEqual(
o.optim.state[x]["momentum_buffer"],
torch.tensor([1.9], device=self.device),
)
# Check that the exposed `param_groups`` are on the proper device
self.assertEqual(o.param_groups[0]["params"][0].device, x.device)
def test_lr_scheduler(self):
"""Check that a normal PyTorch ``lr_scheduler`` is usable with
ZeroRedundancyOptimizer."""
self.dist_init(self.rank)
NUM_ITERS = 5
LR = 0.01
x = torch.tensor([1.0], device=self.device, requires_grad=True)
x2 = torch.tensor([1.0], device=self.device, requires_grad=True)
o = ZeroRedundancyOptimizer([x], optimizer_class=SGD, lr=LR)
o2 = torch.optim.SGD([x2], lr=LR)
s = torch.optim.lr_scheduler.StepLR(o, 1)
s2 = torch.optim.lr_scheduler.StepLR(o2, 1)
for _ in range(NUM_ITERS):
x.backward()
o.zero_grad()
o.step()
s.step()
x2.backward()
o2.zero_grad()
o2.step()
s2.step()
self.assertEqual(x, x2)
def test_step_with_kwargs(self):
"""Check that the ``step(**kwargs)`` interface is properly exposed."""
self.dist_init(self.rank)
LR = 0.1
class SGDWithStepKWArg(torch.optim.SGD):
def step(self, closure=None, kwarg=None):
super().step()
kwarg.append(5)
kwarg: List[Any] = []
x = torch.tensor([1.0], device=self.device, requires_grad=True)
o = ZeroRedundancyOptimizer(
[x], optimizer_class=SGDWithStepKWArg, lr=LR,
)
x.backward()
o.step(0, kwarg=kwarg)
self.assertEqual(kwarg, [5])
self.assertEqual(x, torch.tensor([0.9], device=self.device))
def test_step_with_extra_inner_key(self):
"""Check that ZeroRedundancyOptimizer wrapping an optimizer that adds
extra keys to ``param_groups`` exposes those keys through ZeRO's own
``param_groups``."""
self.dist_init(self.rank)
LR = 0.1
class SGDWithNewKey(torch.optim.SGD):
# Dummy optimizer which adds a new key to the param groups
def step(self, closure=None):
super().step()
self.param_groups[0]["new_key"] = 0.1
x = torch.tensor([1.0], device=self.device, requires_grad=True)
o = ZeroRedundancyOptimizer([x], optimizer_class=SGDWithNewKey, lr=LR)
x.backward()
o.step()
self.assertEqual(o.param_groups[0]["new_key"], 0.1)
self.assertEqual(x, torch.tensor([0.9], device=self.device))
def test_step_without_closure(self):
"""Check that the ``step()`` method (without closure) is handled as
expected."""
self.dist_init(self.rank)
LR = 0.1
class SGDWithoutClosure(torch.optim.SGD):
def step(self):
return super().step()
x = torch.tensor([1.0], device=self.device, requires_grad=True)
o = ZeroRedundancyOptimizer(
[x], optimizer_class=SGDWithoutClosure, lr=LR,
)
x.backward()
o.step()
self.assertEqual(x, torch.tensor([0.9], device=self.device))
def test_zero_grad(self):
"""Check that the ``zero_grad`` method is properly handled."""
self.dist_init(self.rank)
LR = 0.01
x = torch.rand(1)
m = torch.nn.Linear(1, 1)
o = ZeroRedundancyOptimizer(m.parameters(), optimizer_class=SGD, lr=LR)
y = m(x)
y.backward(x)
self.assertNotEqual(m.weight.grad, torch.zeros_like(m.weight))
self.assertNotEqual(m.weight.grad, torch.zeros_like(m.weight))
o.zero_grad()
self.assertFalse(m.weight.grad)
self.assertFalse(m.bias.grad)
def test_constructor(self):
"""Check the robustness of the ZeroRedundancyOptimizer constructor by
passing different values for the ``params`` argument."""
self.dist_init(self.rank)
LR = 0.01
m = torch.nn.Sequential(
torch.nn.Linear(5, 10),
torch.nn.Linear(10, 10),
torch.nn.Linear(10, 10),
)
# Test various constructor inputs in the form: (input, expected error)
ctor_inputs = [
([], ValueError), # empty parameter list
(torch.randn(1), TypeError), # non-iterable: `torch.Tensor`
(1.2, TypeError), # non-iterable: `float`
([
{"params": [l.weight for l in m]},
{"params": [l.bias for l in m]},
], None), # iterable of dict
(list(m.parameters()) + [42], TypeError), # iterable containing invalid type
(m.parameters(), None), # `params` as a generator
(list(m.parameters()), None) # `params` as a list
]
for ctor_input, error in ctor_inputs:
context = self.assertRaises(error) if error else suppress()
with context:
ZeroRedundancyOptimizer(
ctor_input, optimizer_class=SGD, lr=LR,
)
# Test constructing with multiple parameter groups more thoroughly
WD = 0.01
BETAS = (0.9, 0.999)
EPS = 1e-8
params = [
{"params": [l.weight for l in m], "weight_decay": 0.},
{"params": [l.bias for l in m], "weight_decay": WD},
]
o = ZeroRedundancyOptimizer(
params, optimizer_class=AdamW,
lr=LR, betas=BETAS, eps=EPS,
)
assert len(o.param_groups) == 2, \
f"Expected 2 ZeRO param groups, but got {len(o.param_groups)}"
assert len(o.optim.param_groups) == 2, \
"Expected 2 local optimizer param groups, but got " \
f"{len(o.optim.param_groups)}"
def test_same_dense_param_type(self):
"""Check that ZeroRedundancyOptimizer raises an exception if the input
parameters include sparse tensors or different dense types.
NOTE: This test should be removed once support for sparse parameters
and varying parameter types is added.
"""
self.dist_init(self.rank)
LR = 0.01
inputs = [
[torch.sparse_coo_tensor(size=(2, 3))],
[torch.FloatTensor(1), torch.DoubleTensor(1)],
[torch.FloatTensor(1), torch.FloatTensor(1),
torch.sparse_coo_tensor(size=(2, 3))]
]
for input in inputs:
with self.assertRaises(ValueError):
ZeroRedundancyOptimizer(input, optimizer_class=SGD, lr=LR)
class TestZeroRedundancyOptimizerDistributed(TestZeroRedundancyOptimizer):
@property
def device(self):
return torch.device(self.rank) if torch.cuda.is_available() \
else torch.device("cpu")
@property
def world_size(self):
return min(4, max(2, torch.cuda.device_count()))
@property
def context(self):
return suppress() if not torch.cuda.is_available() \
else torch.cuda.device(self.rank)
def _check_same_model_params(
self,
model_a: torch.nn.Module,
model_b: torch.nn.Module,
message: str = "",
) -> None:
# Check that model parameters match
for p_a, p_b in zip(model_a.parameters(), model_b.parameters()):
torch.testing.assert_close(
p_a, p_b, atol=1e-3, rtol=1e-5,
msg=f"Model parameters differ:\n{p_a} {p_b}\n" + message,
)
# Check that model buffers match
for b_a, b_b in zip(model_a.buffers(), model_b.buffers()):
torch.testing.assert_close(
b_a, b_b,
msg=f"Model buffers differ:\n{b_a} {b_b}\n" + message,
)
@common_distributed.skip_if_no_gpu
@common_distributed.skip_if_rocm
def test_step(self):
"""Check that ZeroRedundancyOptimizer properly exposes the ``step()``
interface."""
self.dist_init(self.rank, world_size=self.world_size)
LR = 0.01
with self.context:
x = torch.tensor([float(self.rank + 1)], device=self.device)
m = torch.nn.Linear(1, 1)
m.weight.data = torch.tensor([[1.0]])
m.bias.data = torch.tensor([2.0])
m = m.to(self.device)
m_zero = copy.deepcopy(m).to(self.device)
o = SGD(m.parameters(), lr=LR)
o_zero = ZeroRedundancyOptimizer(
m_zero.parameters(), optimizer_class=SGD, lr=LR,
)
y = m(x)
y.backward(x)
y_zero = m_zero(x)
y_zero.backward(x)
for p in m.parameters():
dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
p.grad.data /= self.world_size
o.step()
for p in m_zero.parameters():
dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
p.grad.data /= self.world_size
o_zero.step()
self.assertEqual(m.weight, m_zero.weight)
self.assertEqual(m.bias, m_zero.bias)
@common_distributed.skip_if_no_gpu
@common_distributed.skip_if_rocm
def test_step_with_closure(self):
"""Check that ZeroRedundancyOptimizer properly exposes the
``step(closure)`` interface."""
self.dist_init(self.rank, world_size=self.world_size)
with self.context:
for bucket_view in [False, True]:
x_val = self.rank + 1
weight = 1.0
bias = 2.0
error = 1.0
target = torch.tensor(
[x_val * weight + bias + error],
device=self.device,
)
loss_fn = torch.nn.L1Loss()
x = torch.tensor([float(x_val)], device=self.device)
m = torch.nn.Linear(1, 1)
m.weight.data = torch.tensor([[weight]])
m.bias.data = torch.tensor([bias])
m.to(self.device)
o = ZeroRedundancyOptimizer(
m.parameters(),
optimizer_class=SGD,
parameters_as_bucket_view=bucket_view,
lr=0.1,
)
y = m(x)
y.backward(x)
for p in m.parameters():
dist.all_reduce(p.grad.data, op=dist.ReduceOp.SUM)
p.grad.data /= self.world_size
def closure():
o.zero_grad()
output = m(x)
loss = loss_fn(output, target)
loss.backward()
return loss
loss = o.step(closure=closure)
self.assertEqual(loss, torch.tensor(error))
self.assertEqual(m.weight, torch.tensor([[1.1]]))
self.assertEqual(m.bias, torch.tensor([2.1]))
@common_distributed.skip_if_no_gpu
def test_lr_scheduler(self):
"""Check that a normal PyTorch ``lr_scheduler`` is usable with
ZeroRedundancyOptimizer."""
self.dist_init(self.rank)
x = torch.tensor([1.0], device=self.device, requires_grad=True)
x2 = torch.tensor([1.0], device=self.device, requires_grad=True)
o = ZeroRedundancyOptimizer([x], optimizer_class=SGD, lr=0.01)
o2 = torch.optim.SGD([x2], lr=0.01)
s = torch.optim.lr_scheduler.StepLR(o, 1)
s2 = torch.optim.lr_scheduler.StepLR(o2, 1)
for _ in range(5):
x.backward()
o.zero_grad()
o.step()
s.step()
x2.backward()
o2.zero_grad()
o2.step()
s2.step()
self.assertEqual(x, x2)
def test_sharding(self):
"""
Check ZeroRedundancyOptimizer's parameter sharding at construction
time.
NOTE: The correctness of this test depends on the ZeRO implementation
using the sorted-greedy partitioning algorithm. For details, see
``ZeroRedundancyOptimizer._partition_parameters()`` in
zero_redundancy_optimizer.py.
"""
self.dist_init(self.rank)
LR = 0.01
sizes = [9, 7, 5, 3]
params = []
for size in sizes * self.world_size:
params.append(torch.rand(size, 1))
o = ZeroRedundancyOptimizer(params, optimizer_class=SGD, lr=LR)
self.assertEqual(
sum([x.numel() for x in o.optim.param_groups[0]["params"]]),
sum(sizes),
)
def test_add_param_group(self):
"""Check that ZeroRedundancyOptimizer properly handles adding a new
parameter group a posteriori and that all ranks get a shard of the
contained parameters.
NOTE: The correctness of this test depends on the ZeRO implementation
using the sorted-greedy partitioning algorithm. For details, see
``ZeroRedundancyOptimizer._partition_parameters()`` in
zero_redundancy_optimizer.py.
"""
self.dist_init(self.rank)
LR = 0.01
# Test with all parameters trainable to begin with
def all_trainable():
params = []
sizes = [9, 7, 5, 3]
sizes_world = sizes * self.world_size
for size in sizes_world[:-1]:
params.append(torch.rand(size, 1))
# Make sure that the params are trainable so that they are factored
# into the size-based parameter partitioning
for p in params:
p.requires_grad = True
o = ZeroRedundancyOptimizer(params, optimizer_class=SGD, lr=LR)
self.assertEqual(len(o.param_groups), 1)
o.add_param_group({"params": [torch.rand(3, 1)]})
# Verify that new group is added to the correct partition, making
# all partitions have the same elements
self.assertEqual(len(o.param_groups), 2)
self.assertEqual(
sum([
x.numel()
for g in o.optim.param_groups
for x in g["params"]
]),
sum(sizes),
)
self.assertEqual(len(o.optim.param_groups), 2)
# Test a pathological config with a first big non-trainable param
def some_trainable():
params = []
for size in [100, 3, 5, 2, 6, 4]:
params.append(torch.rand(size, 1))
# Make sure that all but the first param are trainable so that they
# are factored into the size-based parameter partitioning
for p in params[1:]:
p.requires_grad = True
o = ZeroRedundancyOptimizer(params, optimizer_class=SGD, lr=LR)
self.assertEqual(len(o.param_groups), 1)
o.add_param_group({"params": [torch.rand(3, 1)]})
self.assertEqual(len(o.param_groups), 2)
self.assertEqual(len(o.optim.param_groups), 2)
all_trainable()
some_trainable()
@common_distributed.skip_if_no_gpu
def test_multiple_param_groups(self):
"""
Check parity between constructing ZeRO with multiple parameter groups
upfront versus adding parameter groups to ZeRO after construction
versus a non-sharded optimizer.
"""
self.dist_init(self.rank)
BATCH_SIZE, NUM_ITERS = 8, 3
INPUT_DIM, HIDDEN_DIM, OUTPUT_DIM = 5, 10, 5
WD, LR = 0.01, 0.01
model1 = torch.nn.Sequential(
torch.nn.Linear(INPUT_DIM, HIDDEN_DIM),
torch.nn.Linear(HIDDEN_DIM, HIDDEN_DIM),
torch.nn.Linear(HIDDEN_DIM, OUTPUT_DIM),
)
model2 = copy.deepcopy(model1)
model3 = copy.deepcopy(model1)
model1 = model1.to(self.device)
model2 = model2.to(self.device)
model3 = model3.to(self.device)
inputs = [
torch.randn(BATCH_SIZE, INPUT_DIM).to(self.device)
for _ in range(NUM_ITERS)
]
# Construct `optim1` with both parameter groups upfront
optim1 = ZeroRedundancyOptimizer(
[
{"params": [l.weight for l in model1], "weight_decay": 0.},
{"params": [l.bias for l in model1], "weight_decay": WD},
],
optimizer_class=AdamW, lr=LR,
)
# Construct `optim2` by adding the second parameter after
optim2 = ZeroRedundancyOptimizer(
[l.weight for l in model2],
optimizer_class=AdamW, lr=LR, weight_decay=0.,
)
optim2.add_param_group(
{"params": [l.bias for l in model2], "weight_decay": WD}
)
# Construct `optim3` as a non-sharded optimizer
optim3 = AdamW(
[
{"params": [l.weight for l in model3], "weight_decay": 0.},
{"params": [l.bias for l in model3], "weight_decay": WD},
], lr=LR,
)
# Check parity over a few iterations
for input in inputs:
for model, optim in (
(model1, optim1), (model2, optim2), (model3, optim3),
):
optim.zero_grad()
out = model(input)
loss = out.sum()
loss.backward()
optim.step()
for layer1, layer2, layer3 in zip(model1, model2, model3):
torch.testing.assert_close(layer1.weight, layer2.weight)
torch.testing.assert_close(layer1.weight, layer3.weight)
torch.testing.assert_close(layer1.bias, layer2.bias)
torch.testing.assert_close(layer1.bias, layer3.bias)
@common_distributed.skip_if_no_gpu
@common_distributed.skip_if_rocm
def test_collect_shards(self):
"""Check the state consolidation mechanism and the state dict exposed
by ZeroRedundancyOptimizer."""
self.dist_init(self.rank)
LR = 1e-3
MOMENTUM = 0.99
BATCH_SIZE, INPUT_DIM, HIDDEN_DIM, OUTPUT_DIM = 3, 20, 10, 5
REFERENCE_RANK = 0
target = torch.rand((BATCH_SIZE, OUTPUT_DIM), device=self.device)
inputs = torch.rand((BATCH_SIZE, INPUT_DIM), device=self.device)
model = torch.nn.Sequential(
torch.nn.Linear(INPUT_DIM, HIDDEN_DIM),
torch.nn.Linear(HIDDEN_DIM, OUTPUT_DIM),
).to(self.device)
loss_fn = torch.nn.L1Loss()
loss_fn.to(self.device)
optimizer = ZeroRedundancyOptimizer(
model.parameters(),
optimizer_class=SGD,
lr=LR,
momentum=MOMENTUM, # ensure there exists state to shard
)
def closure():
optimizer.zero_grad()
output = model(inputs)
loss = loss_fn(output, target)
loss.backward()
return loss
# Run a dummy step so that the optimizer state dict exists
_ = optimizer.step(closure=closure)
# Get the optimizer state on the reference rank
optimizer.consolidate_state_dict(to=REFERENCE_RANK)
if self.rank == REFERENCE_RANK:
# Check that the state has the correct size
optimizer_state_dict = optimizer.state_dict()
self.assertEqual(
len(optimizer_state_dict["state"]),
len(list(model.parameters())),
)
else:
optimizer_state_dict = {}
# Load the optimizer state on all ranks without any exceptions
optimizer_state_dict = _broadcast_object(
optimizer_state_dict,
src_rank=REFERENCE_RANK,
group=dist.group.WORLD,
device=self.device,
)
optimizer.load_state_dict(optimizer_state_dict)
def test_nondefault_process_group(self):
"""Check that ZeroRedundancyOptimizer works with a non-default process
group consisting only of even ranks."""
# Skip the test if below the minimum world size since then the test is
# trivial
MIN_WORLD_SIZE = 4
if self.world_size < MIN_WORLD_SIZE:
common_distributed.logger.info(
"Skipping `test_nondefault_process_group()` since world size "
f"of {self.world_size} is less than {MIN_WORLD_SIZE}"
)
return
BACKEND = dist.Backend.GLOO
self.dist_init(self.rank, self.world_size, BACKEND)
# Use GPU if enough are available, or fall back to CPU otherwise, which
# is fine since Gloo backend supports both
if torch.cuda.is_available() and \
torch.cuda.device_count() >= self.world_size:
device = torch.device(self.rank)
else:
device = torch.device("cpu")
# Create a new process group consisting of the even ranks to exercise
# the case where the global and local ranks do not necessarily match
subgroup_ranks = [r for r in range(self.world_size) if r % 2 == 0]
process_group = dist.new_group(
ranks=subgroup_ranks, backend=BACKEND,
)
# Ranks not participating in the new process group are no longer needed
if self.rank not in subgroup_ranks:
return
# Set different seeds across ranks so that each rank gets different
# training data and hence the model sync check is meaningful
torch.manual_seed(self.rank)
np.random.seed(self.rank)
EPOCHS, BATCH_SIZE, INPUT_DIM, HIDDEN_DIM, OUTPUT_DIM = 5, 3, 20, 10, 5
LR = 1e-3
MOMENTUM = 0.99
REFERENCE_RANK = 0
assert REFERENCE_RANK in subgroup_ranks, \
"Reference rank must be in the new process group"
loss_fn = torch.nn.L1Loss().to(device)
def check(optimizer):
for _ in range(EPOCHS):
target = torch.rand((BATCH_SIZE, OUTPUT_DIM), device=device)
inputs = torch.rand((BATCH_SIZE, INPUT_DIM), device=device)
def closure():
optimizer.zero_grad()
output = model(inputs)
loss = loss_fn(output, target)
loss /= self.world_size
loss.backward()
dist.all_reduce(loss, group=process_group)
return loss
_ = optimizer.step(closure=closure)
# Check that the parameters match across ranks after a step
for pg in optimizer.param_groups:
for p in pg["params"]:
receptacle = [
p.clone() for _ in subgroup_ranks
] if self.rank == REFERENCE_RANK else []
dist.gather(
p, receptacle, dst=REFERENCE_RANK,
group=process_group,
)
if self.rank == REFERENCE_RANK:
reference_param = receptacle[0]
for param in receptacle[1:]:
torch.testing.assert_close(
reference_param,
param,
msg="Models differ between ranks",
)
model = torch.nn.Sequential(
torch.nn.Linear(INPUT_DIM, HIDDEN_DIM),
torch.nn.Linear(HIDDEN_DIM, OUTPUT_DIM),
).to(device)
optimizer = ZeroRedundancyOptimizer(
model.parameters(),
optimizer_class=SGD,
lr=LR,
momentum=MOMENTUM, # ensure there exists state to shard
process_group=process_group,
)
check(optimizer)
@common_distributed.skip_if_no_gpu
@parametrize(
"optimizer_class_str",
["Adam", "AdamW", "SGD"],
# Use string to appease the internal test name parser
)
@parametrize(
"maximize",
[False, True],
)
def test_local_optimizer_parity(
self,
optimizer_class_str: str,
maximize: bool,
):
"""When combined with DDP, check that a local optimizer gives the same
results as wrapping that optimizer with ZeroRedundancyOptimizer."""
self.dist_init(self.rank)
BATCHES = 20
BATCH_SIZE = 64
LR = 1e-3
INPUT_DIM = 2
HIDDEN_DIM = 3
OUTPUT_DIM = 3
torch.manual_seed(self.rank)
np.random.seed(self.rank)
if optimizer_class_str == "Adam":
optimizer_class = torch.optim.Adam
elif optimizer_class_str == "AdamW":
optimizer_class = torch.optim.AdamW
elif optimizer_class_str == "SGD":
optimizer_class = torch.optim.SGD
else:
assert 0, f"Unsupported optimizer class: {optimizer_class_str}"
with self.context:
# Define a base model with a different buffer for each rank
model = torch.nn.Sequential(
torch.nn.Linear(INPUT_DIM, HIDDEN_DIM),
torch.nn.Linear(HIDDEN_DIM, HIDDEN_DIM),
torch.nn.Linear(HIDDEN_DIM, OUTPUT_DIM),
).to(self.device)
model.register_buffer(
"test_buffer", torch.ones((1), device=self.device) * self.rank,
)
# Define models/optimizers for DDP with ZeRO and DDP with local
# optimizer
defaults = {"maximize": True} if maximize else {}
sharded_optimizer = ZeroRedundancyOptimizer(
params=model.parameters(), optimizer_class=optimizer_class,
lr=LR, **defaults,
)
sharded_ddp_model = DDP(
module=model, device_ids=[self.rank],
broadcast_buffers=True, find_unused_parameters=True,
)
local_model = copy.deepcopy(model).to(self.device)
ddp_optimizer = optimizer_class(
local_model.parameters(), lr=LR, **defaults,
)
ddp_model = DDP(
local_model, device_ids=[self.rank],
broadcast_buffers=True, find_unused_parameters=True,
)
# Check that the model is properly synchronized between ranks
# at construction time
self._check_same_model_params(
sharded_ddp_model, ddp_model,
"Models differ from the start",
)
def check_step():
input_tensor = torch.rand((BATCH_SIZE, INPUT_DIM))
def closure_ddp(input_tensor=input_tensor):
ddp_optimizer.zero_grad()
ddp_loss = ddp_model(input_tensor).abs().sum()
ddp_loss.backward()
return ddp_loss
def closure_sharded(input_tensor=input_tensor):
sharded_optimizer.zero_grad()
sharded_loss = sharded_ddp_model(input_tensor).abs().sum()
sharded_loss.backward()
return sharded_loss
loss_ddp = cast(
torch.Tensor, ddp_optimizer.step(closure=closure_ddp),
)
loss_sharded_optim = cast(
torch.Tensor,
sharded_optimizer.step(closure=closure_sharded),
)
torch.testing.assert_close(
loss_ddp, loss_sharded_optim,
msg="Losses differ between local optimizer and ZeRO",
)
self._check_same_model_params(
sharded_ddp_model, ddp_model,
"Models differ after a step",
)
# Check that parity is maintained
for i in range(BATCHES):
check_step()
# For the second half of batches, change the parameter
# trainability to further test parity
if i > BATCHES // 2:
next(ddp_model.parameters()).requires_grad = bool(i % 2)
next(sharded_ddp_model.parameters()).requires_grad = bool(i % 2)
# Check that the `state_dict` checkpoints are compatible between
# the local optimizer and ZeRO
REFERENCE_RANK = 0
# - Get states
ddp_state_dict = ddp_optimizer.state_dict()
sharded_optimizer.consolidate_state_dict(to=REFERENCE_RANK)
sharded_optim_state_dict = [
sharded_optimizer.state_dict()
if self.rank == REFERENCE_RANK else {}
]
dist.broadcast_object_list(
sharded_optim_state_dict, src=REFERENCE_RANK,
group=dist.group.WORLD,
)
sharded_optim_state_dict = sharded_optim_state_dict[0]
# - Cross-load the states
# Run one step and check that the models are still the same
ddp_state_dict_ref = copy.deepcopy(ddp_state_dict)
ddp_optimizer.load_state_dict(sharded_optim_state_dict)
sharded_optimizer.load_state_dict(ddp_state_dict)
check_step()
# - Reload their respective states
# Run one step and check that the models are still the same
ddp_optimizer.load_state_dict(ddp_state_dict_ref)
sharded_optimizer.load_state_dict(sharded_optim_state_dict)
check_step()
def _test_zero_join(self, device):
"""Check that the ZeRO join hook allows training with uneven inputs
when using the given device."""
NUM_INPUTS = 3
NUM_EPOCHS = 2
LR = 0.01
torch.manual_seed(0)
torch.cuda.manual_seed(0)
rank = self.rank
world_size = self.world_size
is_gpu = device.type == "cuda"
backend = _get_backend_for_tests() if is_gpu else dist.Backend.GLOO
self.dist_init(rank, world_size, backend)
model = torch.nn.Sequential(
torch.nn.Linear(2, 3),
torch.nn.Linear(3, 3),
torch.nn.Linear(3, 3),
)
model.to(device)
# DDP ensures correct gradients in data parallel training, so DDP with
# local optimizers on uneven inputs should be equivalent to ZeRO on
# uneven inputs with gradients being manually set
ddp_model = DDP(model, device_ids=[rank]) if is_gpu else DDP(model)
local_optim = torch.optim.Adam(ddp_model.parameters(), lr=LR)
zero_model = copy.deepcopy(model)
zero_model.to(device)
zero_optim = ZeroRedundancyOptimizer(
zero_model.parameters(), torch.optim.Adam, lr=LR,
)
loss_fn = torch.nn.MSELoss()
# Use uneven inputs: rank i has i extra inputs
inputs = [
torch.randn(20, 2).to(device) for _ in range(NUM_INPUTS + rank)
]
labels = torch.randn(20, 3).to(device)
# Save the gradients and parameters from DDP as the ground truth; do
# so on the last-joining rank (in this case, the largest rank)
grads_at_each_iter = []
params_at_each_iter = []
with ddp_model.join():
for _ in range(NUM_EPOCHS):
for input in inputs:
output = ddp_model(input)
loss_fn(output, labels).backward()
if rank == world_size - 1:
grads = []
for p in ddp_model.parameters():
grads.append(p.grad.detach().clone().to(device))
local_optim.step()
if rank == world_size - 1:
params = []
for p in ddp_model.parameters():
params.append(p.detach().clone().to(device))
grads_at_each_iter.append(grads)
params_at_each_iter.append(params)
# Broadcast the saved gradients and parameters to all of the other
# ranks (which joined early)
grads_and_params = [grads_at_each_iter, params_at_each_iter]
grads_and_params = _broadcast_object(
grads_and_params, src_rank=world_size - 1, group=dist.group.WORLD,
device=device,
)
grads_at_each_iter = grads_and_params[0]
params_at_each_iter = grads_and_params[1]
# TODO: Replace this `_broadcast_object` with `broadcast_object_list`
# once the latter supports loading to the destination device instead
# of the source device
# A process must still set the remaining gradients after joining, so we
# define a join hook to do this before the ZeRO join hook
class _JoinGradInfo():
def __init__(self, grads):
self.grads = grads # remaining gradients to set (in order)
self.index = 0
class _SetGradsJoinHook(JoinHook):
def __init__(self, zero_optim, grads):
zero_optim._join_grad_info = _JoinGradInfo(grads)
self.zero = zero_optim
super().__init__()
def main_hook(self):
join_grad_info = self.zero._join_grad_info
grads = self.zero._join_grad_info.grads[join_grad_info.index]
join_grad_info.index += 1
for p, grad in zip(self.zero._all_params, grads):
p.grad = grad.detach().clone().to(device)
class _GradientSetter(Joinable):
def __init__(self):
super().__init__()
def join_hook(self, **kwargs):
assert "zero_optim" in kwargs
assert "grads" in kwargs
zero_optim = kwargs["zero_optim"]
grads = kwargs["grads"]
return _SetGradsJoinHook(zero_optim, grads)
@property
def join_device(self):
return device
@property
def join_process_group(self):
return dist.group.WORLD
num_grads_after_joining = NUM_EPOCHS * (world_size - rank - 1)
grads = grads_at_each_iter[-num_grads_after_joining:]
gradient_setter = _GradientSetter()
iter = 0
with Join(
[gradient_setter, zero_optim], zero_optim=zero_optim, grads=grads,
):
for _ in range(NUM_EPOCHS):
for input in inputs:
# Notify join context that this process has not joined
Join.notify_join_context(gradient_setter)
# Set gradients manually
for p, grad in zip(
zero_model.parameters(), grads_at_each_iter[iter],
):
p.grad = grad.detach().clone().to(device)
# Perform optimizer step and check parity
zero_optim.step()
for p, ddp_p in zip(
zero_model.parameters(), params_at_each_iter[iter],
):
torch.testing.assert_close(
p, ddp_p,
msg="Parameters differ between using ZeRO and "
"local optimizer",
)
iter += 1
@common_distributed.requires_nccl()
@common_distributed.skip_if_no_gpu
def test_zero_join_gpu(self):
"""Check that the ZeRO join hook allows training with uneven inputs
on GPU."""
self._test_zero_join(self.device)
@common_distributed.requires_gloo()
def test_zero_join_cpu(self):
"""Check that the ZeRO join hook allows training with uneven inputs
on CPU."""
self._test_zero_join(torch.device("cpu"))
def _test_zero_model_parallel(self, parameters_as_bucket_view: bool):
# Use two processes each with two GPUs
assert self.rank < 2
NUM_EPOCHS = 2
NUM_INPUTS = 4
LR = 0.01
torch.manual_seed(0)
torch.cuda.manual_seed(0)
class ModelParallelModel(torch.nn.Module):
def __init__(self, dev0, dev1):
super().__init__()
self.dev0 = dev0
self.dev1 = dev1
self.net0 = torch.nn.Linear(10, 10).to(dev0)
self.relu = torch.nn.ReLU()
self.net1 = torch.nn.Linear(10, 5).to(dev1)
def forward(self, x):
x = x.to(self.dev0)
x = self.relu(self.net0(x))
x = x.to(self.dev1)
return self.net1(x)
class LocalModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.net0 = torch.nn.Linear(10, 10)
self.relu = torch.nn.ReLU()
self.net1 = torch.nn.Linear(10, 5)
def forward(self, x):
return self.net1(self.relu(self.net0(x)))
dev0 = torch.device(2 * self.rank)
dev1 = torch.device(2 * self.rank + 1)
mp_model = ModelParallelModel(dev0, dev1)
ddp_model = DDP(mp_model)
local_model = LocalModel().to(dev0)
# Ensure the parameters are the same across the two models
def copy_param(p):
return torch.nn.Parameter(p.detach().clone().to(dev0))
local_model.net0.weight = copy_param(mp_model.net0.weight)
local_model.net0.bias = copy_param(mp_model.net0.bias)
local_model.net1.weight = copy_param(mp_model.net1.weight)
local_model.net1.bias = copy_param(mp_model.net1.bias)
# Compare parity between DDP with model parallelism using ZeRO and
# a local model using a local optimizer
zero_optim = ZeroRedundancyOptimizer(
ddp_model.parameters(),
optimizer_class=torch.optim.Adam,
parameters_as_bucket_view=parameters_as_bucket_view,
lr=LR,
)
local_optim = torch.optim.Adam(local_model.parameters(), lr=LR)
inputs = [torch.randn(20, 10).to(dev0) for _ in range(NUM_INPUTS)]
for _ in range(NUM_EPOCHS):
for input in inputs:
def closure_local():
local_optim.zero_grad()
local_loss = local_model(input).abs().sum()
local_loss.backward()
return local_loss
def closure_ddp():
zero_optim.zero_grad()
ddp_loss = ddp_model(input).abs().sum()
ddp_loss.backward()
return ddp_loss
local_loss = cast(
torch.Tensor, local_optim.step(closure=closure_local)
)
ddp_loss = cast(
torch.Tensor, zero_optim.step(closure=closure_ddp)
)
# Increased tolerances are needed to pass when using TF32
# See: https://github.com/pytorch/pytorch/issues/67764
torch.testing.assert_close(
local_loss.cpu(), ddp_loss.cpu(), rtol=1e-03, atol=1e-08,
), "Losses differ between local optimizer and ZeRO"
for local_p, ddp_p in zip(
local_model.parameters(),
ddp_model.parameters()
):
torch.testing.assert_close(
local_p.cpu(), ddp_p.cpu(), rtol=1e-03, atol=1e-04,
), "Models differ after a step"
@common_distributed.skip_if_lt_x_gpu(4)
@parametrize(
"parameters_as_bucket_view",
[False, True],
)
def test_zero_model_parallel(
self,
parameters_as_bucket_view: bool,
):
"""Check that ZeRO works with model parallelism where the model's
layers are assigned to different devices."""
if self.rank >= 2:
return
# Disable DDP + ReplicatedTensor when `parameter_as_bucket_view=True`
# since then ZeroRedundancyOptimizer modifies the model parameters in
# place.
from torch.nn.parallel._replicated_tensor_ddp_utils import _ddp_replicated_tensor
context = _ddp_replicated_tensor(False) if parameters_as_bucket_view \
else suppress()
with context:
self.dist_init(self.rank, world_size=2)
self._test_zero_model_parallel(parameters_as_bucket_view)
def _test_ddp_zero_overlap(
self,
device,
hook_constructor,
gradient_as_bucket_view,
static_graph,
**kwargs,
):
SGD_LR = 0.01
SGD_MOMENTUM = 0.9
SGD_WEIGHT_DECAY = 0.001
NUM_INPUTS = 5
torch.manual_seed(0)
torch.cuda.manual_seed(0)
rank = self.rank
is_gpu = device.type == "cuda"
if is_gpu:
torch.cuda.set_device(device)
models_to_test = [(
torch.nn.Sequential(
torch.nn.Linear(1000, 2000),
torch.nn.Linear(2000, 500),
),
[torch.randn(1, 1000).to(device) for _ in range(NUM_INPUTS)],
)]
if HAS_TORCHVISION:
models_to_test.append((
torchvision.models.resnet50(),
[
torch.randn(1, 3, 3, 1000).to(device)
for _ in range(NUM_INPUTS)
]
))
for (model, inputs) in models_to_test:
# Enable determinism in cudnn operators
with torch.backends.cudnn.flags(
enabled=True, deterministic=True, benchmark=False
):
device_ids = [rank] if is_gpu else None
# Set up the DDP model overlapping with ZeRO
ddp_model_overlap = DDP(
copy.deepcopy(model).to(device),
device_ids=device_ids,
gradient_as_bucket_view=gradient_as_bucket_view
)
if static_graph:
ddp_model_overlap._set_static_graph()
zero_optim = ZeroRedundancyOptimizer(
ddp_model_overlap.parameters(),
optimizer_class=torch.optim.SGD,
overlap_with_ddp=True,
lr=SGD_LR,
momentum=SGD_MOMENTUM,
weight_decay=SGD_WEIGHT_DECAY,
)
ddp_model_overlap.register_comm_hook(
None,
hook_constructor(
allreduce_hook, ddp_model_overlap, zero_optim,
**kwargs,
)
)
# Set up the DDP model with local optimizer
ddp_model_local = DDP(
copy.deepcopy(model).to(device),
device_ids=device_ids,
gradient_as_bucket_view=gradient_as_bucket_view
)
if static_graph:
ddp_model_local._set_static_graph()
local_optim = torch.optim.SGD(
ddp_model_local.parameters(),
lr=SGD_LR,
momentum=SGD_MOMENTUM,
weight_decay=SGD_WEIGHT_DECAY
)
# Check that the parameters match initially
for p1, p2 in zip(
ddp_model_overlap.parameters(),
ddp_model_local.parameters()
):
self.assertEqual(p1, p2)
# Save the parameters to ensure they were updated
init_params_overlap = copy.deepcopy(
list(ddp_model_overlap.parameters())
)
# Ensure that this test runs independently
dist.barrier()
# Run the DDP model overlapping with ZeRO
# NOTE: Overlapping currently requires 2 or 3 warmup iterations
# to ensure DDP buckets have been rebuilt (depending on the
# value of `static_graph`)
num_warmup_inputs = 2 if not static_graph else 3
for input in inputs[:num_warmup_inputs]:
output = ddp_model_overlap(input)
loss = output.sum()
loss.backward()
for input in inputs:
zero_optim.zero_grad()
output = ddp_model_overlap(input)
loss = output.sum()
loss.backward()
# Run the DDP model with local optimizer
for input in inputs:
local_optim.zero_grad()
output = ddp_model_local(input)
loss = output.sum()
loss.backward()
local_optim.step()
dist.barrier()
# Check that the parameters are equal
for p1, p2 in zip(
ddp_model_overlap.parameters(),
ddp_model_local.parameters()
):
self.assertEqual(p1, p2)
# Check that the parameters were updated
self.assertNotEqual(
init_params_overlap, list(ddp_model_overlap.parameters()),
)
# Ensure that this test runs independently
dist.barrier()
# NOTE: The test is skipped if using Windows since functional optimizers
# are not currently supported.
@common_distributed.skip_if_win32()
@common_distributed.requires_nccl()
@common_distributed.skip_if_no_gpu
@common_distributed.skip_if_rocm
@parametrize(
"use_gpu",
[True],
# Add `False` once the Gloo sync issue causing hangs is fixed
# See: https://github.com/pytorch/pytorch/issues/62300
)
@parametrize(
"use_interleaved_hook",
[False, True],
)
@parametrize(
"gradient_as_bucket_view",
[False, True],
)
@parametrize(
"static_graph",
[False, True],
)
@parametrize(
"shard_buckets",
[False, True],
)
def test_ddp_zero_overlap(
self,
use_gpu: bool,
use_interleaved_hook: bool,
gradient_as_bucket_view: bool,
static_graph: bool,
shard_buckets: bool,
):
"""
Check that overlapping DDP with ZeRO using the given method determined
by ``hook_constructor`` and ``shard_buckets`` and using the given ZeRO
and DDP arguments achieves parity with DDP using a local optimizer.
"""
device = torch.device(self.rank) if use_gpu else torch.device("cpu")
backend = _get_backend_for_tests()
self.dist_init(self.rank, self.world_size, backend)
hook_constructor = hook_with_zero_step if not use_interleaved_hook \
else hook_with_zero_step_interleaved
# Disable DDP + ReplicatedTensor since ZeroRedundancyOptimizer
# modifies the model parameters in place.
from torch.nn.parallel._replicated_tensor_ddp_utils import _ddp_replicated_tensor
with _ddp_replicated_tensor(False):
self._test_ddp_zero_overlap(
device, hook_constructor, gradient_as_bucket_view, static_graph,
shard_buckets=shard_buckets,
)
instantiate_parametrized_tests(TestZeroRedundancyOptimizerSingleRank)
instantiate_parametrized_tests(TestZeroRedundancyOptimizerDistributed)
if __name__ == "__main__":
# ! unittest should not be used here, else the tests are not properly registered
run_tests()
|