1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
|
# Owner(s): ["oncall: distributed"]
# Copyright 2019 Kakao Brain
#
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
import pytest
import torch
from torch.distributed.pipeline.sync.copy import Copy, Wait
from torch.distributed.pipeline.sync.stream import CPUStream, current_stream, get_device, is_cuda, new_stream, use_stream
skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
def _test_copy_wait(prev_stream, next_stream, cuda_sleep=None):
device = get_device(prev_stream)
with use_stream(prev_stream):
if is_cuda(prev_stream):
cuda_sleep(0.5)
x = torch.ones(100, device=device, requires_grad=True)
(y,) = Copy.apply(prev_stream, next_stream, x)
(y,) = Wait.apply(prev_stream, next_stream, x)
with use_stream(next_stream):
assert torch.allclose(y.sum(), torch.tensor(100.0, device=device))
y.norm().backward()
with use_stream(prev_stream):
assert torch.allclose(x.grad.sum(), torch.tensor(10.0, device=device))
def test_copy_wait_cpu_cpu():
prev_stream = CPUStream
next_stream = CPUStream
_test_copy_wait(prev_stream, next_stream)
@skip_if_no_cuda
def test_copy_wait_cpu_cuda(cuda_sleep):
prev_stream = CPUStream
next_stream = current_stream(torch.device("cuda"))
_test_copy_wait(prev_stream, next_stream, cuda_sleep)
@skip_if_no_cuda
def test_copy_wait_cuda_cpu(cuda_sleep):
prev_stream = current_stream(torch.device("cuda"))
next_stream = CPUStream
_test_copy_wait(prev_stream, next_stream, cuda_sleep)
@skip_if_no_cuda
def test_copy_wait_cuda_cuda(cuda_sleep):
prev_stream = current_stream(torch.device("cuda"))
next_stream = new_stream(torch.device("cuda"))
_test_copy_wait(prev_stream, next_stream, cuda_sleep)
def test_wait_multiple_tensors():
a = torch.rand(1, requires_grad=True)
b = torch.rand(1, requires_grad=True)
a, b = Wait.apply(CPUStream, CPUStream, a, b)
assert a.grad_fn is b.grad_fn
assert a.grad_fn.__class__ is Wait._backward_cls
|