1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
# Owner(s): ["oncall: distributed"]
# Copyright 2019 Kakao Brain
#
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
from copy import deepcopy
from itertools import chain
import pytest
import torch
from torch import nn, optim
from torch.distributed.pipeline.sync.batchnorm import DeferredBatchNorm
CHUNKS = 4
def tilt_dist(input):
# Tilt variance by channel.
rgb = input.transpose(0, 1)
rgb[0] *= 1
rgb[1] *= 10
rgb[2] *= 100
# Tilt mean by single batch.
for i, single in enumerate(input):
single += 2 ** i
return input
def chunked_forward(model, input, chunks=CHUNKS):
output_chunks = []
for chunk in input.chunk(chunks):
output_chunks.append(model(chunk))
return torch.cat(output_chunks)
@pytest.mark.parametrize("chunks", [1, 4])
@pytest.mark.parametrize("input_requires_grad", [True, False])
def test_transparency(chunks, input_requires_grad):
bn = nn.BatchNorm2d(3)
dbn = DeferredBatchNorm.convert_deferred_batch_norm(deepcopy(bn), chunks=chunks)
input1 = torch.rand(16, 3, 224, 224)
input1 = tilt_dist(input1)
input2 = input1.clone()
input1.requires_grad = input_requires_grad
input2.requires_grad = input_requires_grad
output1 = chunked_forward(bn, input1, chunks=chunks)
output2 = chunked_forward(dbn, input2, chunks=chunks)
assert torch.allclose(output1, output2, atol=1e-4)
output1.mean().backward()
output2.mean().backward()
assert torch.allclose(bn.weight.grad, dbn.weight.grad, atol=1e-4)
if input_requires_grad:
assert input1.grad is not None
assert input2.grad is not None
assert torch.allclose(input1.grad, input2.grad, atol=1e-4)
@pytest.mark.parametrize("momentum", [0.1, None])
def test_running_stats(momentum):
bn = nn.BatchNorm2d(3, momentum=momentum)
dbn = DeferredBatchNorm.convert_deferred_batch_norm(deepcopy(bn), chunks=CHUNKS)
input = torch.rand(16, 3, 224, 224)
input = tilt_dist(input)
bn(input)
chunked_forward(dbn, input)
assert torch.allclose(bn.running_mean, dbn.running_mean, atol=1e-4)
assert torch.allclose(bn.running_var, dbn.running_var, atol=1e-4)
def test_convert_deferred_batch_norm():
bn = nn.BatchNorm2d(3, track_running_stats=False)
bn = DeferredBatchNorm.convert_deferred_batch_norm(bn, chunks=CHUNKS)
assert type(bn) is nn.BatchNorm2d # because of track_running_stats=False
dbn = DeferredBatchNorm(3, chunks=CHUNKS)
dbn_again = DeferredBatchNorm.convert_deferred_batch_norm(dbn, chunks=CHUNKS)
assert dbn is dbn_again
dbn_again = DeferredBatchNorm.convert_deferred_batch_norm(dbn, chunks=CHUNKS + 1)
assert dbn is not dbn_again # because of different chunks
def test_eval():
bn = nn.BatchNorm2d(3)
dbn = DeferredBatchNorm.convert_deferred_batch_norm(deepcopy(bn), chunks=CHUNKS)
input = torch.rand(16, 3, 224, 224)
input = tilt_dist(input)
bn(input)
chunked_forward(dbn, input)
bn.eval()
dbn.eval()
assert torch.allclose(bn(input), dbn(input), atol=1e-4)
def test_optimize():
bn = nn.BatchNorm2d(3)
dbn = DeferredBatchNorm.convert_deferred_batch_norm(deepcopy(bn), chunks=CHUNKS)
opt = optim.SGD(chain(bn.parameters(), dbn.parameters()), lr=1.0)
for i in range(5):
input = torch.rand(16, 3, 224, 224)
input = tilt_dist(input)
# train
y = bn(input)
a = y.sum()
a.backward()
y = chunked_forward(dbn, input)
b = y.sum()
b.backward()
opt.step()
# eval
bn.eval()
dbn.eval()
with torch.no_grad():
assert torch.allclose(bn(input), dbn(input), atol=1e-1 * (10 ** i))
def test_conv_bn():
bn = nn.Sequential(nn.Conv2d(3, 3, 1), nn.BatchNorm2d(3))
dbn = DeferredBatchNorm.convert_deferred_batch_norm(deepcopy(bn), chunks=CHUNKS)
input = torch.rand(16, 3, 224, 224)
input = tilt_dist(input)
opt = optim.SGD(chain(bn.parameters(), dbn.parameters()), lr=0.1)
# 1st step
a = bn(input)
b = chunked_forward(dbn, input)
# Outputs are different. (per-mini-batch vs. per-micro-batch)
assert not torch.allclose(a, b)
a.sum().backward()
b.sum().backward()
opt.step()
opt.zero_grad()
# Conv layers are also trained differently because of their different outputs.
assert not torch.allclose(bn[0].weight, dbn[0].weight)
# But BNs track identical running stats.
assert torch.allclose(bn[1].running_mean, dbn[1].running_mean, atol=1e-4)
assert torch.allclose(bn[1].running_var, dbn[1].running_var, atol=1e3)
# 2nd step
a = bn(input)
b = chunked_forward(dbn, input)
a.sum().backward()
b.sum().backward()
# BNs can't track identical running stats due to the different conv layers.
assert not torch.allclose(bn[1].running_mean, dbn[1].running_mean, atol=1e-4)
assert not torch.allclose(bn[1].running_var, dbn[1].running_var, atol=1e3)
def test_input_requiring_grad():
dbn = DeferredBatchNorm(3, chunks=CHUNKS)
input = torch.rand(16, 3, 224, 224)
input = tilt_dist(input)
input.requires_grad = True
chunked_forward(dbn, input)
assert not dbn.sum.requires_grad
assert dbn.sum.grad_fn is None
|