1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
|
# Owner(s): ["oncall: distributed"]
# Copyright 2019 Kakao Brain
#
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
from collections import OrderedDict
from copy import deepcopy
import time
import pytest
import random
import torch
from torch import nn
from torch import Tensor
from torch.distributed.pipeline.sync import Pipe, NoChunk, WithDevice
from torch.distributed.pipeline.sync.pipe import PipeSequential
skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
def test_pipe_without_rpc():
model = nn.Sequential(nn.Linear(1, 1))
with pytest.raises(RuntimeError, match='Please initialize RPC framework'):
pipe = Pipe(model, chunks=1)
def test_parameters(setup_rpc):
model = nn.Sequential(nn.Linear(1, 1))
pipe = Pipe(model, chunks=1)
assert list(pipe.parameters()) != []
def test_public_attrs(setup_rpc):
class MyString:
def __init__(self, value):
self.value = value
def __str__(self):
return self.value
model = nn.Sequential(nn.Linear(1, 1))
pipe = Pipe(model, chunks=42.000, checkpoint=MyString("always"))
assert pipe.devices == [torch.device("cpu")]
assert pipe.chunks == 42
assert isinstance(pipe.chunks, int)
assert pipe.checkpoint == "always"
assert isinstance(pipe.checkpoint, str)
def test_sequential_like(setup_rpc):
a = nn.Linear(1, 1)
b = nn.Linear(1, 1)
model = nn.Sequential(a, b)
model = Pipe(model)
assert len(model) == 2
assert list(model) == [a, b]
assert model[0] is a
assert model[1] is b
with pytest.raises(IndexError):
_ = model[2]
assert model[-1] is b
assert model[-2] is a
def test_chunks_less_than_1(setup_rpc):
model = nn.Sequential(nn.Linear(1, 1))
with pytest.raises(ValueError):
Pipe(model, chunks=0)
with pytest.raises(ValueError):
Pipe(model, chunks=-1)
def test_batch_size_indivisible(setup_rpc):
model = nn.Sequential(nn.Linear(1, 1))
model = Pipe(model, chunks=4)
with pytest.warns(None) as record:
model(torch.rand(7, 1))
# Indivisible batch size is legal.
assert not record
def test_batch_size_small(setup_rpc):
model = nn.Sequential(nn.Linear(1, 1))
model = Pipe(model, chunks=4)
with pytest.warns(None) as record:
model(torch.rand(2, 1))
# Batch size smaller than chunks is legal.
assert not record
def test_checkpoint_mode(setup_rpc):
def count_grad_fn(grad_fn, name, visited=None):
if visited is None:
visited = set()
if grad_fn in visited:
return 0
visited.add(grad_fn)
if grad_fn is None:
return 0
if grad_fn.__class__.__name__ == name:
return 1
counter = 0
for next_grad_fn, _ in grad_fn.next_functions:
counter += count_grad_fn(next_grad_fn, name, visited=visited)
return counter
model = nn.Sequential(nn.Linear(1, 1))
input = torch.rand(2, 1)
always = Pipe(model, chunks=2, checkpoint="always")
except_last = Pipe(model, chunks=2, checkpoint="except_last")
never = Pipe(model, chunks=2, checkpoint="never")
always_output = always(input)
except_last_output = except_last(input)
never_output = never(input)
assert count_grad_fn(always_output.local_value().grad_fn, "CheckpointBackward") == 2
assert count_grad_fn(except_last_output.local_value().grad_fn, "CheckpointBackward") == 1
assert count_grad_fn(never_output.local_value().grad_fn, "CheckpointBackward") == 0
def test_checkpoint_mode_invalid(setup_rpc):
model = nn.Sequential(nn.Linear(1, 1))
with pytest.raises(ValueError, match="checkpoint is not one of 'always', 'except_last', or 'never'"):
Pipe(model, chunks=2, checkpoint="INVALID_CHECKPOINT")
def test_checkpoint_mode_when_chunks_1(setup_rpc):
model = nn.Sequential(nn.Linear(1, 1))
# All checkpoint modes are fine.
Pipe(model, chunks=1, checkpoint="except_last")
Pipe(model, chunks=1, checkpoint="always")
Pipe(model, chunks=1, checkpoint="never")
def test_checkpoint_eval(setup_rpc):
model = nn.Sequential(nn.Linear(1, 1))
model = Pipe(model, chunks=2)
input = torch.rand(2, 1)
def find_grad_fn(grad_fn, name):
if grad_fn is None:
return False
if grad_fn.__class__.__name__ == name:
return True
for next_grad_fn, _ in grad_fn.next_functions:
if find_grad_fn(next_grad_fn, name):
return True
return False
model.train()
train_output = model(input)
assert find_grad_fn(train_output.local_value().grad_fn, "CheckpointBackward")
assert find_grad_fn(train_output.local_value().grad_fn, "RecomputeBackward")
model.eval()
eval_output = model(input)
assert not find_grad_fn(eval_output.local_value().grad_fn, "CheckpointBackward")
assert not find_grad_fn(eval_output.local_value().grad_fn, "RecomputeBackward")
def test_checkpoint_non_float_input(setup_rpc):
class ForkNonFloat(nn.Module):
def forward(self, input):
return (input * 2, torch.tensor([False]))
class JoinNonFloat(nn.Module):
def forward(self, input, non_float):
return input * 2
model = nn.Sequential(ForkNonFloat(), JoinNonFloat())
model = Pipe(model, chunks=1, checkpoint="always")
input = torch.rand(1, requires_grad=True)
output = model(input)
output.backward()
def test_no_grad(setup_rpc):
model = nn.Sequential(nn.Linear(1, 1))
model = Pipe(model, chunks=2)
input = torch.rand(2, 1)
latent = None
def hook(module, input, output):
_ = module
_ = input
nonlocal latent
latent = output
partition = model.partitions[0]
partition.register_forward_hook(hook)
with torch.no_grad():
model(input)
assert latent.grad_fn is None
def test_exception(setup_rpc):
class ExpectedException(Exception):
pass
class Raise(nn.Module):
def forward(self, *_):
raise ExpectedException()
model = nn.Sequential(Raise())
model = Pipe(model, chunks=1)
with pytest.raises(ExpectedException):
model(torch.rand(1))
def test_exception_early_stop_asap(setup_rpc):
"""Even the first partitions have finished to process, the partition before
the failed partition should be killed as soon as possible.
"""
class ExpectedException(Exception):
pass
class Pass(nn.Module):
def forward(self, x):
return x
counter = 0
class Counter(nn.Module):
def forward(self, x):
time.sleep(0.1)
nonlocal counter
counter += 1
return x
class Raise(nn.Module):
def forward(self, x):
raise ExpectedException()
model = nn.Sequential(Pass(), Pass(), Counter(), Raise())
model = Pipe(model, chunks=3)
with pytest.raises(ExpectedException):
model(torch.rand(3))
# If the early stop doesn't work, it would be 3 instead.
assert counter == 2
def test_nested_input(setup_rpc):
class NestedInput(nn.Module):
def __init__(self):
super().__init__()
self.fc_a = nn.Linear(1, 1)
self.fc_b = nn.Linear(1, 1)
def forward(self, inp):
return inp
model = nn.Sequential(NestedInput())
model = Pipe(model, chunks=2)
a = torch.rand(10, 1, requires_grad=True)
b = torch.rand(10, 1, requires_grad=True)
# TypeError: expected Tensor, but got tuple
with pytest.raises(TypeError):
model((a, (a, b))).local_value()
# TypeError: expected Tensor, but got list
with pytest.raises(TypeError):
model((a, [a, b])).local_value()
def test_input_pair(setup_rpc):
class Two(nn.Module):
def __init__(self):
super().__init__()
self.fc_a = nn.Linear(1, 1)
self.fc_b = nn.Linear(1, 1)
def forward(self, a, b):
return (self.fc_a(a), self.fc_b(b))
model = nn.Sequential(Two())
model = Pipe(model, chunks=2)
a = torch.rand(10, 1, requires_grad=True)
b = torch.rand(10, 1, requires_grad=True)
a_out, b_out = model(a, b).local_value()
loss = (a_out + b_out).mean()
loss.backward()
assert a.grad is not None
assert b.grad is not None
def test_multi_sequence_input(setup_rpc):
class MultiSeq(nn.Module):
def forward(self, tup1, tup2):
return tup1, tup2
model = Pipe(nn.Sequential(MultiSeq()))
with pytest.raises(TypeError):
model(
[torch.rand(10), torch.rand(10)],
[torch.rand(10), torch.rand(10)]
)
def test_input_singleton(setup_rpc):
class One(nn.Module):
def __init__(self):
super().__init__()
self.fc = nn.Linear(1, 1)
def forward(self, a):
return (self.fc(a),)
model = nn.Sequential(One())
model = Pipe(model, chunks=2)
a = torch.rand(10, 1, requires_grad=True)
(a_out,) = model(a).local_value()
loss = a_out.mean()
loss.backward()
assert all(p.grad is not None for p in model.parameters())
assert a.grad is not None
def test_input_varargs(setup_rpc):
model = nn.Sequential(nn.Linear(1, 1))
model = Pipe(model)
a = torch.rand(1)
b = torch.rand(1)
# TypeError: forward() takes 2 positional arguments but 3 were given
with pytest.raises(TypeError):
model(a, b)
def test_non_tensor(setup_rpc):
class NonTensor(nn.Module):
def forward(self, _):
return "hello"
model = nn.Sequential(NonTensor())
model = Pipe(model)
x = torch.rand(1)
with pytest.raises(TypeError):
model(x)
with pytest.raises(TypeError):
model("hello")
def test_non_tensor_sequence(setup_rpc):
class NonTensorTuple(nn.Module):
def forward(self, x):
return (x, "hello")
class NonTensorArgs(nn.Module):
def forward(self, x: str, y: bool):
return x, y
model = nn.Sequential(NonTensorTuple())
model = Pipe(model)
x = torch.rand(1)
with pytest.raises(TypeError):
model((x, "hello"))
with pytest.raises(TypeError):
model([x, "hello"])
model = nn.Sequential(NonTensorArgs())
model = Pipe(model)
with pytest.raises(TypeError):
# Need atleast one Tensor.
model("hello", True)
@pytest.mark.parametrize("checkpoint", ["never", "always", "except_last"])
def test_valid_non_tensor(checkpoint, setup_rpc):
class NonTensor1(nn.Module):
def forward(self, a: int, b: Tensor, c: bool, d: Tensor):
res = b + a if c else b * a
if d is not None:
res += d
return res, c, a, b, "hello", d
class NonTensor2(nn.Module):
def forward(self, a: Tensor, b: bool, c: int, d: Tensor, e: str, f: Tensor):
res = a * c if b else a + c
res += d
return c, res, a, d + f if f is not None else d, b, e, f
model = Pipe(nn.Sequential(NonTensor1(), NonTensor2()), chunks=5, checkpoint=checkpoint)
a = random.randint(0, 10)
b = torch.rand(10, 10)
c = random.randint(0, 1) == 0
d = torch.rand(10, 10)
res = model(a, b, c, d).local_value()
assert 7 == len(res)
assert [a] * 5 == res[0]
if c:
assert torch.allclose(((b + a + d) * a) + b, res[1])
assert torch.allclose(b + a + d, res[2])
else:
assert torch.allclose(((b * a) + d + a) + b, res[1])
assert torch.allclose(b * a + d, res[2])
assert torch.allclose(b + d, res[3])
assert [c] * 5 == res[4]
assert ["hello"] * 5 == res[5]
assert torch.allclose(d, res[6])
# Test one of the tensors can be None
res = model(a, b, c, None).local_value()
assert 7 == len(res)
assert [a] * 5 == res[0]
if c:
assert torch.allclose(((b + a) * a) + b, res[1])
assert torch.allclose(b + a, res[2])
else:
assert torch.allclose(((b * a) + a) + b, res[1])
assert torch.allclose(b * a, res[2])
assert torch.allclose(b, res[3])
assert [c] * 5 == res[4]
assert ["hello"] * 5 == res[5]
assert [None] * 5 == res[6]
# Need atleast one tensor.
with pytest.raises(TypeError):
model(a, None, c, None)
@pytest.mark.parametrize("checkpoint", ["never", "always", "except_last"])
def test_no_tensor_output(checkpoint, setup_rpc):
class Model1(nn.Module):
def forward(self, a: int, b: Tensor, c: bool):
return a, c, "hello"
class Model2(nn.Module):
def forward(self, a: int, b: bool, c: str):
return a, c, b
model = Pipe(nn.Sequential(Model1(), Model2()), chunks=5)
a = random.randint(0, 10)
b = torch.rand(10, 10)
c = random.randint(0, 1) == 0
# Need atleast one tensor across partitions too.
with pytest.raises(TypeError):
res = model(a, b, c).local_value()
@pytest.mark.parametrize("checkpoint", ["never", "always", "except_last"])
def test_uneven_batch_size(checkpoint, setup_rpc):
class Model(nn.Module):
def forward(self, a: Tensor, b: int, c: Tensor):
return a, b, c
model = Pipe(nn.Sequential(Model()), checkpoint=checkpoint, chunks=5)
a = torch.rand(3, 10)
b = random.randint(0, 10)
c = torch.rand(6, 10)
res = model(a, b, c).local_value()
assert torch.allclose(a, res[0])
assert [b] * 3 == res[1] # 3 chunks
assert torch.allclose(c, res[2])
# Two tensors producing uneven chunks would fail.
model = Pipe(nn.Sequential(Model()), checkpoint=checkpoint, chunks=5)
a = torch.rand(3, 10)
b = random.randint(0, 10)
c = torch.rand(4, 10)
with pytest.raises(RuntimeError, match='Found different number of chunks'):
model(a, b, c)
@pytest.mark.parametrize("checkpoint", ["never", "always", "except_last"])
def test_no_chunk(checkpoint, setup_rpc):
class Model(nn.Module):
def forward(self, a: Tensor, b: int, c: Tensor):
return a, b, c
model = Pipe(nn.Sequential(Model()), checkpoint=checkpoint, chunks=5)
a = torch.rand(10, 10)
b = random.randint(0, 10)
c = torch.rand(10, 10)
res = model(a, b, NoChunk(c)).local_value()
assert torch.allclose(a, res[0])
assert [b] * 5 == res[1]
# c gets replicated due to NoChunk and the same tensor gets concatenated 5
# times in the output.
assert torch.allclose(torch.cat((c, c, c, c, c)), res[2])
# Test invalid type for NoChunk
with pytest.raises(TypeError, match='NoChunk only supported for tensors'):
NoChunk(b)
@pytest.mark.parametrize("checkpoint", ["never", "always", "except_last"])
def test_deferred_batch_norm(checkpoint, setup_rpc):
bn = nn.BatchNorm2d(3)
pipe_bn = deepcopy(bn)
pipe = Pipe(
nn.Sequential(pipe_bn), chunks=2, checkpoint=checkpoint, deferred_batch_norm=True
)
x = torch.rand(4, 3, 10, 10)
pipe(x).local_value().mean().backward()
bn(x).mean().backward()
assert torch.allclose(pipe[0].running_mean, bn.running_mean, atol=1e-4)
assert torch.allclose(pipe[0].running_var, bn.running_var, atol=1e-4)
@pytest.mark.parametrize("checkpoint", ["never", "always"])
def test_deferred_batch_norm_params(checkpoint, setup_rpc):
bn = nn.BatchNorm2d(3)
pipe_bn = deepcopy(bn)
pipe = Pipe(
nn.Sequential(pipe_bn), chunks=1, checkpoint=checkpoint, deferred_batch_norm=True
)
x = torch.rand(4, 3, 10, 10)
pipe(x).local_value().mean().backward()
bn(x).mean().backward()
assert pipe[0].weight.grad is not None
assert pipe[0].bias.grad is not None
assert torch.allclose(pipe[0].weight.grad, bn.weight.grad, atol=1e-4)
assert torch.allclose(pipe[0].bias.grad, bn.bias.grad, atol=1e-4)
def test_devices(setup_rpc):
a = nn.Linear(1, 1)
b = nn.Linear(1, 1)
c = nn.Linear(1, 1)
# There are extra two devices.
model = nn.Sequential(a, b, c)
model = Pipe(model)
cpu = torch.device("cpu")
# Extra devices must be discarded.
assert model.devices == [cpu, cpu, cpu]
def test_partitions(setup_rpc):
a = nn.Linear(1, 1)
b = nn.Linear(1, 1)
model = nn.Sequential(a, b)
model = Pipe(model)
assert isinstance(model.partitions, nn.ModuleList)
assert isinstance(model.partitions[0], nn.Sequential)
assert isinstance(model.partitions[1], nn.Sequential)
assert "partitions.0.0.weight" in model.state_dict()
@pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")
def test_merged_partitions(setup_rpc):
a = nn.Linear(1, 1).to(0)
b = nn.Sequential(nn.Linear(1, 1), nn.Linear(1, 2)).to(0)
c = nn.Linear(1, 1)
d = nn.Linear(1, 2)
model = nn.Sequential(a, b, c, d)
model = Pipe(model)
assert isinstance(model.partitions, nn.ModuleList)
assert isinstance(model.partitions[0], PipeSequential)
assert isinstance(model.partitions[1], PipeSequential)
assert list(model.partitions[0]) == [a, b[0], b[1]]
assert list(model.partitions[1]) == [c]
assert list(model.partitions[2]) == [d]
def test_deny_moving(setup_rpc):
a = nn.Linear(1, 1)
b = nn.Linear(1, 1)
model = nn.Sequential(a, b)
model = Pipe(model)
# Moving is denied.
with pytest.raises(TypeError):
model.cuda()
with pytest.raises(TypeError):
model.cpu()
with pytest.raises(TypeError):
model.to(torch.device("cuda"))
with pytest.raises(TypeError):
model.to(0)
with pytest.raises(TypeError):
model.to("cuda")
with pytest.raises(TypeError):
model.to(device=0)
with pytest.raises(TypeError):
model.to(torch.rand(1))
with pytest.raises(TypeError):
model.to(tensor=torch.rand(1))
# Casting is allowed.
model.half()
model.to(torch.double)
model.to(dtype=torch.float)
def test_empty_module(setup_rpc):
# Empty sequential module is not illegal.
model = nn.Sequential()
model = Pipe(model)
assert model(torch.tensor(42)).local_value() == torch.tensor(42)
# But only tensor or tensors is legal in Pipe.
with pytest.raises(TypeError):
model(42)
def test_named_children(setup_rpc):
a = nn.Linear(1, 1)
b = nn.Linear(1, 1)
model = nn.Sequential(OrderedDict([("a", a), ("b", b)]))
model = Pipe(model)
names = set(n for n, _ in model.named_modules())
assert "partitions.0.0" in names
assert "partitions.1.0" in names
# Pipe doesn't support __getattr__. Unlike nn.Sequential, Pipe requires
# several methods in its namespace.
with pytest.raises(AttributeError):
model.a
def test_verify_module_non_sequential(setup_rpc):
with pytest.raises(TypeError, match="module must be nn.Sequential to be partitioned"):
Pipe(nn.Module())
def test_verify_module_duplicate_children(setup_rpc):
conv = nn.Conv2d(3, 3, 1)
model = nn.Sequential(conv, conv)
with pytest.raises(ValueError, match="module with duplicate children is not supported"):
Pipe(model)
@skip_if_no_cuda
def test_verify_module_params_on_same_device(setup_rpc):
class Surrogate(nn.Module):
def __init__(self, param1, param2):
super().__init__()
self.param1 = param1
self.param2 = param2
conv1 = nn.Conv2d(3, 3, 1)
conv2 = nn.Conv2d(3, 3, 1)
model = nn.Sequential(Surrogate(conv1, conv2.cuda()))
with pytest.raises(
ValueError,
match=r'should have all parameters on a single device, please use .to\(\)'
' to place the module on a single device'):
Pipe(model)
@skip_if_no_cuda
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Need atleast two GPUs")
def test_verify_nested_modules(setup_rpc):
model = nn.Sequential(
nn.Sequential(
nn.Linear(32, 16).cuda(0),
nn.Linear(16, 8).cuda(0)
),
nn.Sequential(
nn.Linear(8, 4).cuda(1),
nn.Linear(4, 2).cuda(1)
),
)
pipe = Pipe(model)
out = pipe(torch.rand(10, 32).cuda(0))
assert out.local_value().device == torch.device("cuda:1")
assert out.local_value().size() == torch.Size([10, 2])
def test_verify_module_duplicate_parameters_on_same_device(setup_rpc):
class Surrogate(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
conv = nn.Conv2d(3, 3, 1)
model = nn.Sequential(Surrogate(conv), Surrogate(conv))
Pipe(model)
def test_forward_lockstep(setup_rpc):
timeline = []
class DelayedLog(nn.Module):
def __init__(self, j, seconds):
super().__init__()
self.i = 0
self.j = j
self.seconds = seconds
def forward(self, x):
time.sleep(self.seconds)
timeline.append((self.i, self.j))
self.i += 1
return x
model = nn.Sequential(DelayedLog(0, seconds=0), DelayedLog(1, seconds=0.1))
model = Pipe(model, chunks=3)
model(torch.rand(3, 1))
# Expected timeline: (Logs are recorded at !)
#
# Partition #0: 0! 1! 2!
# Partition #1: 000! 111! 222!
#
assert timeline == [(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (2, 1)]
@pytest.mark.parametrize("checkpoint", ["never", "always", "except_last"])
@skip_if_no_cuda
def test_multiple_inputs(checkpoint, setup_rpc):
class Module1(nn.Module):
def forward(self, a, b, c):
return a + b + c, a * b * c
class Module2(nn.Module):
def forward(self, a, b):
return a + b
model = Pipe(nn.Sequential(Module1().cuda(0), Module2().cuda(0)), chunks=2, checkpoint=checkpoint)
t = torch.rand(10)
res = model(t, t, t).local_value()
assert torch.equal(res, (t + t + t) + (t * t * t))
@skip_if_no_cuda
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Need atleast two GPUs")
def test_inputs_wrong_device(setup_rpc):
class Module1(nn.Module):
def __init__(self):
super().__init__()
self.param = torch.nn.Parameter(torch.rand(5))
def forward(self, a, b):
return a + b + self.param, b
# Start inputs on wrong device and ensure Pipe moves them correctly.
a = torch.rand(10).cuda(1)
b = torch.rand(10).cuda(1)
model = Pipe(nn.Sequential(Module1().cuda(0), Module1().cuda(1)), chunks=2)
with pytest.raises(ValueError, match='All inputs should be on the same device as the first partition'):
model(a, b)
@skip_if_no_cuda
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Need atleast two GPUs")
def test_with_device_wrapper(setup_rpc):
fc1 = nn.Linear(16, 8).cuda(0)
fc2 = nn.Linear(8, 4).cuda(1)
dropout = nn.Dropout()
model = nn.Sequential(fc1, fc2, WithDevice(dropout, 'cuda:1'))
model = Pipe(model, chunks=8)
assert torch.device('cuda:1') == model(torch.rand(16, 16).cuda(0)).local_value().device
assert [torch.device('cuda:0'), torch.device('cuda:1')] == model.devices
model = nn.Sequential(fc1, WithDevice(dropout, 'cuda:1'))
model = Pipe(model, chunks=8)
assert torch.device('cuda:1') == model(torch.rand(16, 16).cuda(0)).local_value().device
assert [torch.device('cuda:0'), torch.device('cuda:1')] == model.devices
model = nn.Sequential(fc1, WithDevice(fc2, 'cuda:0'))
model = Pipe(model, chunks=8)
assert torch.device('cuda:0') == model(torch.rand(16, 16).cuda(0)).local_value().device
assert [torch.device('cuda:0')] == model.devices
assert torch.device('cuda:0') == fc2.weight.device
|