File: test_stream.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (190 lines) | stat: -rw-r--r-- 5,954 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Owner(s): ["oncall: distributed"]

# Copyright 2019 Kakao Brain
#
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
import pytest
import torch

from torch.distributed.pipeline.sync.stream import (
    CPUStream,
    current_stream,
    default_stream,
    get_device,
    is_cuda,
    new_stream,
    record_stream,
    use_device,
    use_stream,
    wait_stream,
)

skip_if_no_cuda = pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required")


class TestNewStream:
    def test_new_stream_cpu(self):
        stream = new_stream(torch.device("cpu"))
        assert stream is CPUStream

    @skip_if_no_cuda
    def test_new_stream_cuda(self):
        stream = new_stream(torch.device("cuda"))
        assert isinstance(stream, torch.cuda.Stream)
        assert stream != torch.cuda.default_stream()


class TestCurrentStream:
    def test_current_stream_cpu(self):
        stream = current_stream(torch.device("cpu"))
        assert stream is CPUStream

    @skip_if_no_cuda
    def test_current_stream_cuda(self):
        stream = current_stream(torch.device("cuda"))
        assert isinstance(stream, torch.cuda.Stream)
        assert stream == torch.cuda.current_stream()


class TestDefaultStream:
    def test_default_stream_cpu(self):
        stream = default_stream(torch.device("cpu"))
        assert stream is CPUStream

    @skip_if_no_cuda
    def test_default_stream_cuda(self):
        stream = default_stream(torch.device("cuda"))
        assert isinstance(stream, torch.cuda.Stream)
        assert stream == torch.cuda.default_stream()


class TestUseDevice:
    def test_use_device_cpu(self):
        with use_device(torch.device("cpu")):
            pass

    @skip_if_no_cuda
    def test_use_device_cuda(self):
        with use_device(torch.device("cuda")):
            pass


class TestUseStream:
    def test_use_stream_cpu(self):
        with use_stream(CPUStream):
            pass

    @skip_if_no_cuda
    def test_use_stream_cuda(self):
        stream = new_stream(torch.device("cuda"))
        with use_stream(stream):
            assert current_stream(torch.device("cuda")) == stream


class TestGetDevice:
    def test_get_device_cpu(self):
        assert get_device(CPUStream).type == "cpu"

    @skip_if_no_cuda
    def test_get_device_cuda(self):
        stream = current_stream(torch.device("cuda"))
        assert get_device(stream).type == "cuda"


class TestWaitStream:
    def _test_wait_stream(self, source, target, cuda_sleep=None):
        with use_stream(target):
            if is_cuda(target):
                cuda_sleep(0.5)
            x = torch.ones(100, 100, device=get_device(target))

        wait_stream(source, target)

        with use_stream(source):
            assert x.sum().item() == 10000

    def test_wait_stream_cpu_cpu(self):
        source = CPUStream
        target = CPUStream
        self._test_wait_stream(source, target)

    @skip_if_no_cuda
    def test_wait_stream_cpu_cuda(self, cuda_sleep):
        source = CPUStream
        target = new_stream(torch.device("cuda"))
        self._test_wait_stream(source, target, cuda_sleep)

    @skip_if_no_cuda
    def test_wait_stream_cuda_cpu(self, cuda_sleep):
        source = new_stream(torch.device("cuda"))
        target = CPUStream
        self._test_wait_stream(source, target, cuda_sleep)

    @skip_if_no_cuda
    def test_wait_stream_cuda_cuda(self, cuda_sleep):
        source = current_stream(torch.device("cuda"))
        target = new_stream(torch.device("cuda"))
        self._test_wait_stream(source, target, cuda_sleep)


class TestRecordStream:
    def test_record_stream_cpu(self):
        # It should silently ignore CPU tensors.
        x = torch.rand(1, device=torch.device("cpu"))
        record_stream(x, CPUStream)

    @skip_if_no_cuda
    def test_record_stream_cuda(self, cuda_sleep):
        # This test detects unexpected block reallocation. For reliable test,
        # the stream to allocate tensors is isolated. The allocator will not
        # reuse free blocks which were allocated from another stream.
        stream_alloc = new_stream(torch.device("cuda"))
        with torch.cuda.stream(stream_alloc):
            x = torch.rand(1, device=torch.device("cuda"))

        stream = new_stream(torch.device("cuda"))
        record_stream(x, stream)
        with use_stream(stream):
            cuda_sleep(0.5)

        # 'x' is deleted at Python's perspective. But the block of 'x' is still
        # required for 'stream'. 'y' shouldn't be allocated to the block.
        data_ptr = x.data_ptr()
        del x
        stream_alloc.synchronize()
        with torch.cuda.stream(stream_alloc):
            y = torch.rand(1, device=torch.device("cuda"))
        assert y.data_ptr() != data_ptr

        # Pause Python until 'stream' finishes tasks queued. Now the block of
        # 'x' is free to be reallocated.
        wait_stream(CPUStream, stream)
        with torch.cuda.stream(stream_alloc):
            z = torch.rand(1, device=torch.device("cuda"))
        assert z.data_ptr() == data_ptr

    @skip_if_no_cuda
    def test_record_stream_shifted_view(self, cuda_sleep):
        # Issue: https://github.com/pytorch/pytorch/issues/27366
        stream_alloc = new_stream(torch.device("cuda"))
        with torch.cuda.stream(stream_alloc):
            x = torch.rand(2, device=torch.device("cuda"))

        y = x[1:]
        assert y.data_ptr() > x.data_ptr()

        stream = new_stream(torch.device("cuda"))
        with use_stream(stream):
            cuda_sleep(0.5)
        record_stream(y, stream)

        data_ptr = x.data_ptr()
        del x, y

        stream_alloc.synchronize()
        with torch.cuda.stream(stream_alloc):
            z = torch.rand(2, device=torch.device("cuda"))
        assert z.data_ptr() != data_ptr