File: test_transparency.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (45 lines) | stat: -rw-r--r-- 1,182 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Owner(s): ["oncall: distributed"]

# Copyright 2019 Kakao Brain
#
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
import torch
from torch import nn

from torch.distributed.pipeline.sync import Pipe


def test_simple_linears(setup_rpc):
    def sum_grad(parameters):
        return sum([p.grad.sum() for p in parameters if p.grad is not None])

    def zero_grad(parameters):
        for p in parameters:
            p.grad = None

    inputs = torch.rand(8, 1)
    model = nn.Sequential(nn.Linear(1, 2), nn.Linear(2, 4), nn.Linear(4, 2), nn.Linear(2, 1),)

    # Without Pipe
    outputs = model(inputs)
    loss = outputs.mean()
    loss.backward()

    grad_without_pipe = sum_grad(model.parameters())

    zero_grad(model.parameters())

    # With Pipe
    model = Pipe(model, chunks=4)

    outputs = model(inputs).local_value()
    loss = outputs.mean()
    loss.backward()

    grad_with_pipe = sum_grad(model.parameters())

    # Both grads should be identical.
    assert torch.allclose(grad_with_pipe, grad_without_pipe)