File: test_c10d_common.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (1636 lines) | stat: -rw-r--r-- 60,045 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
# Owner(s): ["oncall: distributed"]

import copy
import os
import sys
import tempfile
import threading
import time
from contextlib import suppress
from datetime import timedelta
from itertools import product
from sys import platform
from typing import Callable

import torch
import torch.distributed as dist

if not dist.is_available():
    print("distributed package not available, skipping tests", file=sys.stderr)
    sys.exit(0)

import torch.distributed.distributed_c10d as c10d
import torch.distributed.algorithms.ddp_comm_hooks.powerSGD_hook as powerSGD
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.distributed._spmd.comm_tensor import _wait_comm, CommTensor
from torch.fx.experimental.proxy_tensor import make_fx
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
    MultiProcessTestCase,
    skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import (
    TestCase,
    load_tests,
    run_tests,
    TEST_WITH_DEV_DBG_ASAN,
    instantiate_parametrized_tests,
    parametrize
)
from torch.utils.checkpoint import checkpoint


if TEST_WITH_DEV_DBG_ASAN:
    print("Multiprocessing spawn is not compatible with dev/dbg asan", file=sys.stderr)
    sys.exit(0)

# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests

if platform == "darwin":
    LOOPBACK = "lo0"
else:
    LOOPBACK = "lo"

torch.backends.cuda.matmul.allow_tf32 = False


def gpus_for_rank(world_size):
    """Multigpu tests are designed to simulate the multi nodes with multi
    GPUs on each node. Nccl backend requires equal #GPUs in each process.
    On a single node, all visible GPUs are evenly
    divided to subsets, each process only uses a subset.
    """
    visible_devices = list(range(torch.cuda.device_count()))
    gpus_per_process = torch.cuda.device_count() // world_size
    gpus_for_rank = []
    for rank in range(world_size):
        gpus_for_rank.append(
            visible_devices[rank * gpus_per_process : (rank + 1) * gpus_per_process]
        )
    return gpus_for_rank


class AbstractTimeoutTest(object):
    def _test_store_timeout(self, backend, init_method, c2p):
        try:
            dist.init_process_group(
                backend=backend,
                init_method=init_method,
                world_size=1,
                rank=0,
                timeout=timedelta(seconds=1),
            )
            default_store = c10d._get_default_store()
            tik = time.time()
            with self.assertRaisesRegex(RuntimeError, "Timeout"):
                default_store.get("nonexistent key")
            tok = time.time()
            dist.destroy_process_group()
            c2p.append(float(tok - tik))
        except RuntimeError as e:
            # catch "Address already in use" error and report it to the main
            # thread
            c2p.append(e)

    def _init_methods(self):
        f = tempfile.NamedTemporaryFile(delete=False)
        if sys.platform == "win32":
            yield "file:///%s" % f.name.replace("\\", "/")
            f.close()
        else:
            yield "file://%s" % f.name
            f.close()
            yield "tcp://127.0.0.1:%d" % common.find_free_port()

    def _test_default_store_timeout(self, backend):
        for init_method in self._init_methods():
            c2p = []
            t = threading.Thread(
                target=self._test_store_timeout, args=(backend, init_method, c2p)
            )
            t.daemon = True
            t.start()
            t.join(5)

            self.assertEqual(1, len(c2p))
            if isinstance(c2p[0], float):
                # waiting time should be 1s, use 3s to rule out false alarm
                self.assertGreater(3, c2p[0])
            elif isinstance(c2p[0], RuntimeError):
                # let @retry_on_connect_failures handle the error
                raise c2p[0]
            else:
                raise RuntimeError("Unexpected type {}".format(type(c2p[0])))


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(2, 10, bias=False)
        self.fc2 = nn.Linear(10, 50, bias=False)
        self.fc3 = nn.Linear(50, 4, bias=False)
        self.relu = nn.ReLU()

    def forward(self, x):
        x = self.relu(self.fc1(x))
        x = self.relu(self.fc2(x))
        x = self.fc3(x)
        return F.softmax(x, dim=1)


class DoubleGpuNet(nn.Module):
    def __init__(self, gpus):
        super(DoubleGpuNet, self).__init__()
        self.fc1 = nn.Linear(2, 10, bias=False).to(gpus[0])
        self.fc2 = nn.Linear(10, 50, bias=False).to(gpus[1])
        self.fc3 = nn.Linear(50, 4, bias=False).to(gpus[1])
        self.relu = nn.ReLU()
        self.no_grad_param = nn.Parameter(
            torch.tensor([2, 2]).long(), requires_grad=False
        ).to(gpus[0])

    def forward(self, x):
        dev0 = self.fc1.weight.device
        dev1 = self.fc2.weight.device
        x = self.relu(self.fc1(x.to(dev0)))
        x = self.relu(self.fc2(x.to(dev1)))
        x = self.fc3(x)
        return F.softmax(x, dim=1).to(dev0)


class QuadraGpuNet(nn.Module):
    def __init__(self, gpus):
        super(QuadraGpuNet, self).__init__()
        self.fc1 = nn.Linear(2, 10, bias=False).to(gpus[0])
        self.fc2 = nn.Linear(10, 50, bias=False).to(gpus[1])
        self.fc3 = nn.Linear(50, 4, bias=False).to(gpus[2])
        self.fc4 = nn.Linear(4, 4, bias=False).to(gpus[3])
        self.relu = nn.ReLU()
        self.no_grad_param = nn.Parameter(
            torch.tensor([2, 2]).long(), requires_grad=False
        ).to(gpus[0])

    def forward(self, x):
        dev0 = self.fc1.weight.device
        dev1 = self.fc2.weight.device
        dev2 = self.fc3.weight.device
        dev3 = self.fc4.weight.device
        x = self.relu(self.fc1(x.to(dev0)))
        x = self.relu(self.fc2(x.to(dev1)))
        x = self.relu(self.fc3(x.to(dev2)))
        x = self.fc4(x.to(dev3))
        return F.softmax(x, dim=1).to(dev0)


class ConvNet(nn.Module):
    def __init__(self, gpus, layouts, dtypes):
        super(ConvNet, self).__init__()
        self.dtypes = dtypes
        if isinstance(gpus, list):
            self.layer_gpus = gpus
        else:
            gpus = [gpus] * 4
        self.conv0 = torch.nn.Conv2d(8, 16, (2, 2)).to(
            device=gpus[0], memory_format=layouts[0], dtype=dtypes[0]
        )
        self.conv1 = torch.nn.Conv2d(16, 32, (2, 2)).to(
            device=gpus[1], memory_format=layouts[1], dtype=dtypes[1]
        )
        self.conv2 = torch.nn.Conv2d(32, 16, (2, 2)).to(
            device=gpus[2], memory_format=layouts[2], dtype=dtypes[2]
        )
        self.conv3 = torch.nn.Conv2d(16, 8, (2, 2)).to(
            device=gpus[3], memory_format=layouts[3], dtype=dtypes[3]
        )

    def forward(self, x):
        x = x.to(self.dtypes[0])
        # Could say
        # x = self.conv0(x).to(device=self.conv1.weight.device, dtype=self.dtypes[1])
        # etc.  But I don't want to appeal to the weights' devices directly, because part of this test's purpose
        # is to verify weights are where expected if the model gets replicated.
        gpus = self.layer_gpus if hasattr(self, "layer_gpus") else [x.device] * 4
        x = self.conv0(x).to(device=gpus[1], dtype=self.dtypes[1])
        x = self.conv1(x).to(device=gpus[2], dtype=self.dtypes[2])
        x = self.conv2(x).to(device=gpus[3], dtype=self.dtypes[3])
        return self.conv3(x)


class Task(nn.Module):
    def __init__(self):
        super().__init__()
        self.p = nn.Parameter(torch.ones(2, 2))

    def forward(self, x):
        return self.p + x


class ModuleForDdpCommHook(nn.Module):
    def __init__(self):
        super().__init__()
        self.t0 = Task()

    def forward(self, x, rank):
        return self.t0(x + rank)


class SparseGradientModule(nn.Module):
    def __init__(self):
        super(SparseGradientModule, self).__init__()
        self.embedding = nn.EmbeddingBag(10, 10, sparse=True)

    def forward(self, x):
        return F.softmax(self.embedding(x), dim=1)


class CommonDistributedDataParallelTest(object):
    def tearDown(self):
        # DistributedDataParallel test doesn't seem to call FileStore destructor
        # TODO: investigate this test and the test is known to have issues
        # Use this hack to remove files for that test
        try:
            os.remove(self.file_name)
        except OSError:
            pass

    @property
    def world_size(self):
        return 2

    def _prepare_single_device_module(
        self,
        process_group,
        devices,
        device_ids,
        global_batch_size,
        gradient_as_bucket_view=False,
    ):
        model = Net()
        device = devices[0] if devices else torch.device("cuda:%d" % self.rank)
        ddp_model = DistributedDataParallel(
            copy.deepcopy(model).to(device),
            device_ids=device_ids,
            process_group=process_group,
            bucket_cap_mb=0.001,
            gradient_as_bucket_view=gradient_as_bucket_view,
        )

        model.to(device)

        input = torch.randn(global_batch_size, 2).to(device)
        target = torch.randn(global_batch_size, 4).to(device)

        return model, ddp_model, input, target

    def _prepare_multi_device_module(
        self,
        process_group,
        devices,
        device_ids,
        global_batch_size,
        gradient_as_bucket_view=False,
    ):
        self.assertTrue(
            len(devices) == 2 or len(devices) == 4,
            "unexpected devices for ddp tests {}".format(devices),
        )
        if len(devices) == 2:
            model = DoubleGpuNet(devices)
        elif len(devices) == 4:
            model = QuadraGpuNet(devices)

        ddp_model = DistributedDataParallel(
            copy.deepcopy(model),
            device_ids=device_ids,
            process_group=process_group,
            bucket_cap_mb=0.001,
            gradient_as_bucket_view=gradient_as_bucket_view,
        )

        input = torch.randn(global_batch_size, 2).cuda(devices[0])
        target = torch.randn(global_batch_size, 4)

        return model, ddp_model, input, target

    def _get_store(self):
        return dist.FileStore(self.file_name, self.world_size)

    def _get_process_group(self):
        raise NotImplementedError("To be implemented by child class")

    def _train_model(self, model, input_var, target, loss, run_checkpoint=False, use_reentrant=True):
        model.train()
        if run_checkpoint:
            output = checkpoint(model, input_var, use_reentrant=use_reentrant)
        else:
            output = model(input_var)
        l = loss(output, target)
        l.backward()

    def _test_ddp_checkpointing(
        self,
        input_model,
        process_group,
        use_bucket_view,
        find_unused_parameters=False,
        static_graph=False,
        run_checkpoint=False,
        use_reentrant=True,
        allow_none_grads=False,
    ):
        # to reproduce the same training results
        torch.cuda.set_device(self.rank)
        torch.manual_seed(31415)
        model = copy.deepcopy(input_model).cuda()
        ddp_model = copy.deepcopy(input_model).cuda()
        ddp_model = nn.parallel.DistributedDataParallel(
            ddp_model,
            bucket_cap_mb=1,
            gradient_as_bucket_view=use_bucket_view,
            device_ids=[self.rank],
            process_group=process_group,
            find_unused_parameters=find_unused_parameters,
            static_graph=static_graph,
        )
        self.assertEqual(
            ddp_model._get_ddp_logging_data().get("static_graph", 0), static_graph
        )
        input, ddp_input, target, ddp_target = self._prepare_dummy_data()
        loss = nn.MSELoss()
        n_iters = 5
        for i in range(n_iters):
            model.zero_grad(set_to_none=False)
            ddp_model.zero_grad(set_to_none=False)
            self._train_model(model, input, target, loss, run_checkpoint=run_checkpoint, use_reentrant=use_reentrant)
            self._train_model(
                ddp_model, ddp_input, ddp_target, loss, run_checkpoint=run_checkpoint, use_reentrant=use_reentrant
            )
            for i, j in zip(model.parameters(), ddp_model.parameters()):
                if not allow_none_grads:
                    self.assertTrue(i.grad is not None)
                    self.assertTrue(j.grad is not None)
                self.assertEqual(i.grad, j.grad, rtol=1.3e-06, atol=5e-5)

    # A list of tests for ddp with activation checkpointing
    # when gradient_as_bucket_view=True, False.
    # Most of the tests are referred to
    # https://github.com/facebookresearch/fairscale/blob/main/tests/nn/pipe/test_checkpoint_ddp.py
    class CheckpointOnceModule(nn.Module):
        """
        Runs checkpoint for a single layer in the model.
        """
        def __init__(self, use_reentrant=True):
            super().__init__()
            self.l1 = nn.Linear(20, 20)
            self.l2 = nn.Linear(20, 20)
            self.use_reentrant = use_reentrant

        def forward(self, inp):
            x = self.l1(inp)
            x = checkpoint(self.l2, x, use_reentrant=self.use_reentrant)
            return x

    class CheckpointTwiceModule(CheckpointOnceModule):
        """
        Runs checkpoint for the same layer twice in a model. This simulates use
        cases such as pipeline parallel where the same layer can be checkpointed
        more than one time.
        """
        def __init__(self, use_reentrant=True):
            super().__init__(use_reentrant=use_reentrant)

        def forward(self, inp):
            x = self.l1(inp)
            x = checkpoint(self.l2, x, use_reentrant=self.use_reentrant)
            x = checkpoint(self.l2, x, use_reentrant=self.use_reentrant)
            return x

    class CheckpointTwiceModuleWeightSharing(CheckpointTwiceModule):
        """
        Similar to CheckpointTwiceModule but the weights are shared.
        """
        def __init__(self, use_reentrant=True):
            super().__init__(use_reentrant=use_reentrant)
            # Share weights
            self.l1.weight = self.l2.weight

        def forward(self, inp):
            x = self.l1(inp)
            x = checkpoint(self.l2, x, use_reentrant=self.use_reentrant)
            x = checkpoint(self.l2, x, use_reentrant=self.use_reentrant)
            return x


    class DynamicCheckpointTwiceModule(CheckpointTwiceModule):
        def __init__(self, use_reentrant=True):
            super().__init__(use_reentrant=use_reentrant)
            self.count = 0

        def forward(self, inp):
            if self.count % 2:
                x = checkpoint(self.l1, inp, use_reentrant=self.use_reentrant)
            else:
                x = checkpoint(self.l2, inp, use_reentrant=self.use_reentrant)

            self.count += 1
            return x

    class DynamicCheckpointTwiceModuleWeightSharing(DynamicCheckpointTwiceModule):
        def __init__(self, use_reentrant=True):
            super().__init__(use_reentrant=use_reentrant)
            # Share weights
            self.l1.weight = self.l2.weight


    def _prepare_dummy_data(self):
        ddp_bs = 16
        bs = ddp_bs * self.world_size
        input = torch.rand((bs, 20), device="cuda", requires_grad=True)
        target = torch.randn((bs, 20), device="cuda")
        offset = self.rank * ddp_bs
        ddp_input = input[offset : offset + ddp_bs]
        ddp_target = target[offset : offset + ddp_bs]
        return input, ddp_input, target, ddp_target


    @skip_if_lt_x_gpu(2)
    @parametrize("use_reentrant", [True, False])
    def test_ddp_checkpointing_once(self, use_reentrant):
        """
        DDP works as expected when layer is checkpointed only once.
        """
        process_group = self._get_process_group()
        for use_bucket_view, static_graph in product((False, True), (False, True)):
            self._test_ddp_checkpointing(
                self.CheckpointOnceModule(use_reentrant=use_reentrant),
                process_group=process_group,
                use_bucket_view=use_bucket_view,
                static_graph=static_graph,
            )
            if static_graph:
                # find_unused_parameters does not make a difference, since it is
                # ignored for static graph.
                self._test_ddp_checkpointing(
                    self.CheckpointOnceModule(),
                    process_group=process_group,
                    use_bucket_view=use_bucket_view,
                    static_graph=static_graph,
                    find_unused_parameters=True,
                )

    @skip_if_lt_x_gpu(2)
    @parametrize("use_reentrant", [True, False])
    def test_ddp_checkpointing_unused_params(self, use_reentrant):
        """
        With reentrant autograd checkpointing impl, DDP will fail when there are
        unused params in the model and no static graph training. With
        non-reentrant checkpointing implementation, this works as expected.
        """
        process_group = self._get_process_group()
        for use_bucket_view in (True, False):
            err_ctx = (
                suppress() if not use_reentrant else
                self.assertRaisesRegex(
                    RuntimeError,
                    "Expected to mark a variable ready only once."
                )
            )
            with err_ctx:
                model = self._test_ddp_checkpointing(
                    self.CheckpointOnceModule(use_reentrant=use_reentrant),
                    process_group=process_group,
                    use_bucket_view=use_bucket_view,
                    find_unused_parameters=True,
                )
            # test passes when static_graph is true
            model = self._test_ddp_checkpointing(
                self.CheckpointOnceModule(use_reentrant=use_reentrant),
                process_group=process_group,
                use_bucket_view=use_bucket_view,
                find_unused_parameters=True,
                static_graph=True,
            )

    @skip_if_lt_x_gpu(2)
    @parametrize("use_reentrant", [True, False])
    def test_ddp_checkpointing_twice(self, use_reentrant):
        """
        Checkpoitning twice fails for non-static graph with reentrant checkpoint
        implementation, succeeds with non-reentrant checkpoint implementation.
        """
        process_group = self._get_process_group()
        for use_bucket_view in (True, False):
            err_ctx = (
                suppress() if not use_reentrant else
                self.assertRaisesRegex(
                    RuntimeError,
                    "Expected to mark a variable ready only once."
                )
            )
            with err_ctx:
                model = self._test_ddp_checkpointing(
                    self.CheckpointTwiceModule(use_reentrant=use_reentrant),
                    process_group=process_group,
                    use_bucket_view=use_bucket_view,
                    static_graph=False,
                )

            with err_ctx:
                model = self._test_ddp_checkpointing(
                    self.CheckpointTwiceModule(use_reentrant=use_reentrant),
                    process_group=process_group,
                    use_bucket_view=use_bucket_view,
                    static_graph=False,
                    find_unused_parameters=True,
                )

    @skip_if_lt_x_gpu(2)
    @parametrize("use_reentrant", [True, False])
    def test_ddp_checkpointing_twice_static_graph(self, use_reentrant):
        """
        Regardless of reentrant or non-reentrant checkpointing impl,
        checkpointing twice works with static graph enabled.
        """
        process_group = self._get_process_group()
        for use_bucket_view in (True, False):
            # Test passes when static_graph=True.
            model = self._test_ddp_checkpointing(
                self.CheckpointTwiceModule(use_reentrant=use_reentrant),
                process_group=process_group,
                use_bucket_view=use_bucket_view,
                static_graph=True,
            )

    @skip_if_lt_x_gpu(2)
    def test_ddp_checkpointing_dynamic_module(self):
        """
        Dynamic module can be checkpointed, multiple times, with non-reentrant
        checkpointing implementation.
        """
        process_group = self._get_process_group()
        for use_bucket_view in (True, False):
            model = self._test_ddp_checkpointing(
                self.DynamicCheckpointTwiceModule(use_reentrant=False),
                process_group=process_group,
                use_bucket_view=use_bucket_view,
                static_graph=False,
                find_unused_parameters=True,
                # Grads can be none sometimes due to dynamic module not using
                # all params.
                allow_none_grads=True
            )

    @skip_if_lt_x_gpu(2)
    def test_ddp_checkpointing_dynamic_weight_sharing(self):
        """
        Dynamic module can be checkpointed multiple times with weight sharing
        using non-reentrant checkpointing implementation.
        """
        process_group = self._get_process_group()
        for use_bucket_view in (True, False):
            model = self._test_ddp_checkpointing(
                self.DynamicCheckpointTwiceModuleWeightSharing(use_reentrant=False),
                process_group=process_group,
                use_bucket_view=use_bucket_view,
                static_graph=False,
                find_unused_parameters=True,
                # Grads can be none sometimes due to dynamic module not using
                # all params.
                allow_none_grads=True
            )

    # DDP works as expected if there is weight sharing among layers
    @skip_if_lt_x_gpu(2)
    @parametrize("use_reentrant", [True, False])
    def test_ddp_checkpointing_weight_sharing(self, use_reentrant):
        """
        Test that checkpointing with weight sharing works.
        """
        process_group = self._get_process_group()
        torch.cuda.set_device(self.rank)
        for use_bucket_view, static_graph in product((False, True), (False, True)):
            torch.manual_seed(31415)
            l1 = nn.Linear(20, 20)
            l2 = nn.Linear(20, 20)
            l1.weight = l2.weight
            model = nn.Sequential(l1, l2)
            # TODO: non-reentrant based checkpointing of DDP module with
            # static_graph runs into the below issue, see
            # https://github.com/pytorch/pytorch/issues/70865 and
            # https://github.com/pytorch/pytorch/issues/58111 for details.
            err_ctx = (
                self.assertRaisesRegex(
                    RuntimeError,
                    "Your training graph has changed in this iteration"
                ) if static_graph and not use_reentrant else suppress()
            )
            with err_ctx:
                self._test_ddp_checkpointing(
                    model,
                    process_group=process_group,
                    use_bucket_view=use_bucket_view,
                    static_graph=static_graph,
                    run_checkpoint=True,
                    use_reentrant=use_reentrant,
                )

    @skip_if_lt_x_gpu(2)
    def test_ddp_checkpointing_twice_weight_sharing(self):
        """
        Checkpointing should work with static graph in the case of checkpointing
        same layer twice and having weights shared acrosss layers.
        """
        process_group = self._get_process_group()
        torch.cuda.set_device(self.rank)
        for use_bucket_view in (True, False):
            model = self._test_ddp_checkpointing(
                self.CheckpointTwiceModuleWeightSharing(),
                process_group=process_group,
                use_bucket_view=use_bucket_view,
                static_graph=True,
            )

    def test_invalid_powerSGD_state(self):
        for start_powerSGD_iter, use_error_feedback, warm_start in product(
            [0, 1], [True, False], [True, False]
        ):
            if not use_error_feedback and not warm_start:
                continue
            with self.assertRaisesRegex(
                ValueError,
                "Expect `start_powerSGD_iter` > 1 if `use_error_feedback` or `warm_start` is enabled, "
                "because PowerSGD can only be applied after the first two iterations in DDP.",
            ):
                state = powerSGD.PowerSGDState(
                    process_group=None,
                    matrix_approximation_rank=1,
                    start_powerSGD_iter=start_powerSGD_iter,
                    use_error_feedback=use_error_feedback,
                    warm_start=warm_start,
                )

    def _test_ddp_with_process_group(
        self,
        process_group,
        devices,
        device_ids,
        multi_device=False,
        gradient_as_bucket_view=False,
    ):
        """
        Note: we pass down `device_ids` all the way to DistributedDataParallel
        as part of the test. Below you find tests that either use a list of
        integers, a list of `torch.Device` instances, or an empty list.
        The `devices` argument is used to control placement of the model and
        must always be specified as list of `torch.Device` instances.
        """
        local_batch_size = 1 if devices is None else len(devices)
        global_batch_size = self.world_size * local_batch_size

        if multi_device:
            model, ddp_model, input, target = self._prepare_multi_device_module(
                process_group,
                devices,
                device_ids,
                global_batch_size,
                gradient_as_bucket_view,
            )
            ddp_logging_data = ddp_model._get_ddp_logging_data()
            self.assertTrue(ddp_logging_data.get("is_multi_device_module"))
        else:
            model, ddp_model, input, target = self._prepare_single_device_module(
                process_group,
                devices,
                device_ids,
                global_batch_size,
                gradient_as_bucket_view,
            )
            ddp_logging_data = ddp_model._get_ddp_logging_data()
            self.assertFalse(ddp_logging_data.get("is_multi_device_module"))

        def step_model(model, input, target):
            model.train()
            output = model(input)
            loss = F.mse_loss(output, target.to(output.device))
            loss.backward()

        def update_parameters(model):
            for param in model.parameters():
                with torch.no_grad():
                    param -= param.grad
                param.grad = None

        # check two model parameters over 2 iterations
        for iteration in range(2):
            # single cpu/gpu training
            step_model(model, input, target)

            # DDP training, DDP scatters subsets of input_cpu to nodes/GPUs
            step_model(
                ddp_model,
                input[
                    self.rank * local_batch_size : (self.rank + 1) * local_batch_size
                ],
                target[
                    self.rank * local_batch_size : (self.rank + 1) * local_batch_size
                ],
            )

            # Update weights and run a second iteration to shake out errors
            update_parameters(model)
            update_parameters(ddp_model)
            self.assertEqual(
                len(list(model.parameters())), len(list(ddp_model.parameters()))
            )
            for i, j in zip(model.parameters(), ddp_model.parameters()):
                self.assertEqual(i, j, rtol=1.3e-06, atol=5e-5)

            # Shuffle the input so that DDP input is different
            torch.manual_seed(1337 + iteration)
            input = input[torch.randperm(global_batch_size)]

    def _gpu_model_with_ddp_comm_hook(
        self, process_group, hook=None, gradient_as_bucket_view=False, state=None
    ):
        device_id = gpus_for_rank(self.world_size)[self.rank][0]
        gpu_model = DistributedDataParallel(
            ModuleForDdpCommHook().to(device_id),
            device_ids=[device_id],
            process_group=process_group,
            gradient_as_bucket_view=gradient_as_bucket_view,
        )

        # Register a DDP communication hook if any.
        if hook is not None:
            gpu_model.register_comm_hook(state, hook)

        return gpu_model

    def _gpu_model_with_builtin_ddp_comm_hook(
        self, process_group, hook=None, gradient_as_bucket_view=False
    ):
        device_id = gpus_for_rank(self.world_size)[self.rank][0]
        gpu_model = DistributedDataParallel(
            ModuleForDdpCommHook().to(device_id),
            device_ids=[device_id],
            process_group=process_group,
            gradient_as_bucket_view=gradient_as_bucket_view,
        )

        # Register a built-in DDP communication hook if defined
        if hook is not None:
            gpu_model._register_builtin_comm_hook(hook)

        return gpu_model

    def _run_and_verify_hook(self, model, input, expected_grad):
        # Run forward
        output = model(input, self.rank)

        # Run backward
        output.mean().backward()

        [self.assertEqual(p.grad, expected_grad) for p in model.parameters()]

    def _simple_hook(
        self, state: object, bucket: dist.GradBucket
    ) -> torch.futures.Future[torch.Tensor]:
        fut = torch.futures.Future()
        fut.set_result(torch.ones_like(bucket.buffer()))

        def fut_then(fut):
            # Add ones to fut's result.
            t = fut.value()
            return t + torch.ones_like(t)

        return fut.then(fut_then)

    def _test_not_nan(self, model, x):
        y = model(x)
        self.assertFalse(y.isnan().any().item())
        y.sum().backward()
        for p in model.parameters():
            self.assertFalse(p.grad.isnan().any().item())

    @skip_if_lt_x_gpu(2)
    def test_sync_batch_norm_only_empty_input(self):
        pg = self._get_process_group()

        model = torch.nn.Sequential(
            nn.BatchNorm2d(2),
        ).to(device=self.rank)
        model = DistributedDataParallel(
            model,
            device_ids=[self.rank],
            process_group=pg,
        )
        model = nn.SyncBatchNorm.convert_sync_batchnorm(
            model,
            process_group=pg,
        )

        model.train()

        # only rank 0 receives empty inputs
        x = torch.zeros(
            (1 if self.rank != 0 else 0, 2, 11, 13),
            dtype=torch.float32,
            device=self.rank
        )

        # input requires grad, this will trigger the collective communication
        # in the backward pass
        x.requires_grad = True
        self._test_not_nan(model, x)

        # input does not requires grad
        x.requires_grad = False
        self._test_not_nan(model, x)

        # all ranks receive empty inputs
        x = torch.zeros(
            (0, 2, 11, 13),
            dtype=torch.float32,
            device=self.rank
        )

        # input requires grad, this will trigger the collective communication
        # in the backward pass
        x.requires_grad = True
        self._test_not_nan(model, x)

        # input does not requires grad
        x.requires_grad = False
        self._test_not_nan(model, x)

    @skip_if_lt_x_gpu(2)
    def test_sync_batch_norm_empty_input(self):
        pg = self._get_process_group()

        model = torch.nn.Sequential(
            nn.Conv2d(2, 2, 3),
            nn.BatchNorm2d(2),
            nn.Linear(28, 2),
        ).to(device=self.rank)
        model = DistributedDataParallel(
            model,
            device_ids=[self.rank],
            process_group=pg,
        )
        model = nn.SyncBatchNorm.convert_sync_batchnorm(
            model,
            process_group=pg,
        )

        model.train()
        # only rank 0 receives empty inputs
        x = torch.zeros(
            (3 if self.rank != 0 else 0, 2, 30, 30),
            dtype=torch.float32,
            device=self.rank
        )

        self._test_not_nan(model, x)

        # all ranks receive empty inputs
        x = torch.zeros(
            (0, 2, 30, 30),
            dtype=torch.float32,
            device=self.rank
        )

        self._test_not_nan(model, x)

class ComputeBucketAssignmentTest(TestCase):
    def test_single_limit_single_dtype(self):
        tensors = [
            torch.empty([100], dtype=torch.float),
            torch.empty([200], dtype=torch.float),
            torch.empty([100], dtype=torch.float),
            torch.empty([50], dtype=torch.float),
        ]
        result, per_bucket_size_limits = dist._compute_bucket_assignment_by_size(
            tensors, [400]
        )
        self.assertTrue(all(size_lim == 400 for size_lim in per_bucket_size_limits))
        self.assertEqual([[0], [1], [2], [3]], result)

    def test_single_limit_multi_dtype(self):
        tensors = [
            torch.empty([50], dtype=torch.float),
            torch.empty([25], dtype=torch.double),
            torch.empty([50], dtype=torch.float),
            torch.empty([25], dtype=torch.double),
            torch.empty([50], dtype=torch.float),
            torch.empty([25], dtype=torch.double),
        ]
        result, per_bucket_size_limits = dist._compute_bucket_assignment_by_size(
            tensors, [400]
        )
        self.assertTrue(all(size_lim == 400 for size_lim in per_bucket_size_limits))
        self.assertEqual([[0, 2], [1, 3], [4], [5]], result)

    def test_multi_limit_single_dtype(self):
        tensors = [
            torch.empty([10], dtype=torch.float),
            torch.empty([10], dtype=torch.float),
            torch.empty([10], dtype=torch.float),
            torch.empty([10], dtype=torch.float),
        ]
        result, per_bucket_size_limits = dist._compute_bucket_assignment_by_size(
            tensors, [40, 80]
        )
        self.assertEqual(per_bucket_size_limits, [40, 80, 80])
        self.assertEqual([[0], [1, 2], [3]], result)

    def test_multi_limit_multi_dtype(self):
        tensors = [
            torch.empty([50], dtype=torch.float),
            torch.empty([25], dtype=torch.double),
            torch.empty([50], dtype=torch.float),
            torch.empty([25], dtype=torch.double),
            torch.empty([50], dtype=torch.float),
            torch.empty([25], dtype=torch.double),
        ]
        result, per_bucket_size_limits = dist._compute_bucket_assignment_by_size(
            tensors, [200, 400]
        )
        self.assertEqual([[0], [1], [2, 4], [3, 5]], result)
        self.assertEqual(per_bucket_size_limits, [200, 200, 400, 400])


class AbstractCommTest(object):
    @property
    def op_timeout_sec(self):
        return 1

    @property
    def world_size(self):
        return 2

    @property
    def device(self):
        self.fail("test subclass didn't override device")

    def _verify_sequence_number_across_pg(self, pg, verify_pg):

        seq_num = pg._get_sequence_number_for_group()
        obj_list = [None for _ in range(dist.get_world_size(verify_pg))]
        # We use a separate pg to verify the sequence numbers, otherwise these
        # collectives will themselves increment the sequence number.
        dist.all_gather_object(obj_list, seq_num, group=verify_pg)
        self.assertEqual(len(set(obj_list)), 1)
        return obj_list[0]

    def _test_sequence_num_incremented(self, process_group, ranks):
        # verify initial sequence numbers. Use a distinct process group for
        # verification to keep counts as expected with respect to process_group.
        verify_pg = dist.new_group(
            ranks=ranks,
            backend="gloo",
        )
        assert dist.get_world_size(process_group) == dist.get_world_size(verify_pg)

        initial_num = (
            self._verify_sequence_number_across_pg(
                pg=process_group, verify_pg=verify_pg
            )
            if not c10d._rank_not_in_group(process_group)
            else -1
        )

        # Verify sequence numbers are appropriately incremented
        for i in range(10):
            t = torch.ones(1, device=torch.cuda.current_device())
            dist.all_reduce(t, group=process_group)
            if not c10d._rank_not_in_group(process_group):
                seq_num = self._verify_sequence_number_across_pg(
                    pg=process_group,
                    verify_pg=verify_pg,
                )
                self.assertEqual(initial_num + i + 1, seq_num)

        if dist.get_world_size(process_group) > 2:
            # Test when certain ranks don't call collectives
            if dist.get_rank(process_group) not in [0, 2]:
                dist.all_reduce(t, group=process_group, async_op=True)
            # Now ranks 0 and 2 should be lagging by 1.
            if not c10d._rank_not_in_group(process_group):
                seq_num = process_group._get_sequence_number_for_group()
                rank = dist.get_rank(process_group)
                obj_list = [None for _ in range(dist.get_world_size(verify_pg))]
                dist.all_gather_object(obj_list, (rank, seq_num), group=verify_pg)
                rank_to_seq_num = {rank: num for (rank, num) in obj_list}
                self.assertEqual(len(set(rank_to_seq_num.values())), 2)
                self.assertEqual(rank_to_seq_num[0], rank_to_seq_num[2])
                expected_same = {
                    rank_to_seq_num[i]
                    for i in rank_to_seq_num.keys()
                    if i not in [0, 2]
                }
                self.assertEqual(len(expected_same), 1)
                self.assertEqual(rank_to_seq_num[0] + 1, rank_to_seq_num[1])

    def _test_sequence_num_incremented_default_group(self, backend_name):
        torch.cuda.set_device(self.rank)
        store = dist.FileStore(self.file_name, self.world_size)
        dist.init_process_group(
            backend_name,
            world_size=self.world_size,
            rank=self.rank,
            store=store,
        )
        self._test_sequence_num_incremented(
            c10d._get_default_group(),
            ranks=list(i for i in range(dist.get_world_size())),
        )

    def _test_sequence_num_incremented_subgroup(self, backend_name):
        torch.cuda.set_device(self.rank)
        store = dist.FileStore(self.file_name, self.world_size)
        dist.init_process_group(
            backend_name,
            world_size=self.world_size,
            rank=self.rank,
            store=store,
        )
        subgroup_ranks = [0, 1, 2]
        subgroup = dist.new_group(subgroup_ranks)
        self._test_sequence_num_incremented(subgroup, subgroup_ranks)

    def _test_sequence_num_set_default_pg(self, backend):
        store = dist.FileStore(self.file_name, self.world_size)
        dist.init_process_group(
            backend,
            world_size=self.world_size,
            rank=self.rank,
            store=store,
        )

        default_pg = c10d._get_default_group()
        seq_num = default_pg._get_sequence_number_for_group()
        obj_list = [None for _ in range(dist.get_world_size())]
        dist.all_gather_object(obj_list, seq_num)
        self.assertEqual(len(set(obj_list)), 1)

    def _test_sequence_num_set_new_group(self, backend):
        store = dist.FileStore(self.file_name, self.world_size)
        dist.init_process_group(
            backend,
            world_size=self.world_size,
            rank=self.rank,
            store=store,
        )

        subgroup = dist.new_group([0, 1])

        if not c10d._rank_not_in_group(subgroup):
            subgroup_seq = subgroup._get_sequence_number_for_group()
            obj_list = [None for _ in range(dist.get_world_size(subgroup))]
            dist.all_gather_object(obj_list, subgroup_seq, group=subgroup)
            self.assertEqual(len(set(obj_list)), 1)

    def _test_warn_not_in_group(self, backend):
        store = dist.FileStore(self.file_name, self.world_size)
        dist.init_process_group(
            backend,
            world_size=self.world_size,
            rank=self.rank,
            store=store,
        )
        in_group_ranks = list(filter(lambda x: x % 2 == 0, range(self.world_size)))
        group = dist.new_group(in_group_ranks)

        x = torch.zeros(2, 2).cuda(self.rank)
        xs = [torch.zeros(2, 2).cuda(self.rank) for _ in range(len(in_group_ranks))]
        if self.rank not in in_group_ranks:
            msg = ".*{}.*does not belong to.*"
            with self.assertWarnsOnceRegex(UserWarning, msg.format("all_gather")):
                dist.all_gather(xs, x, group=group)
            with self.assertWarnsOnceRegex(UserWarning, msg.format("all_reduce")):
                dist.all_reduce(x, group=group)
            with self.assertWarnsOnceRegex(UserWarning, msg.format("barrier")):
                dist.barrier(group=group)
            with self.assertWarnsOnceRegex(UserWarning, msg.format("broadcast")):
                dist.broadcast(x, src=0, group=group)
        else:
            dist.all_gather(xs, x, group=group)
            dist.all_reduce(x, group=group)
            dist.barrier(group=group)
            dist.broadcast(x, src=0, group=group)

    def _test_rank_membership(self, backend):
        store = dist.FileStore(self.file_name, self.world_size)
        dist.init_process_group(
            backend,
            world_size=self.world_size,
            rank=self.rank,
            store=store,
        )
        self.assertTrue(self.world_size > 1)

        group = dist.new_group(ranks=[1])
        self.assertEqual(dist.get_group_rank(group, 1), 0)
        with self.assertRaisesRegex(RuntimeError, "not part of group"):
            dist.get_group_rank(group, 0)
        with self.assertRaisesRegex(RuntimeError, "not registered"):
            dist.get_group_rank(DummyProcessGroup(self.rank, self.world_size), 0)

        self.assertEqual(dist.get_global_rank(group, 0), 1)
        with self.assertRaisesRegex(RuntimeError, "not part of group"):
            dist.get_global_rank(group, 1)
        with self.assertRaisesRegex(RuntimeError, "not registered"):
            dist.get_global_rank(DummyProcessGroup(self.rank, self.world_size), 0)

        self.assertEqual(dist.get_process_group_ranks(group), [1])

    def _test_tensor_dtype_mismatch(self, backend):
        store = dist.FileStore(self.file_name, self.world_size)
        dist.init_process_group(
            backend,
            world_size=self.world_size,
            rank=self.rank,
            store=store,
        )

        tensor = torch.ones(2, 2, device=self.device) * 7
        tensor_h = tensor.half()
        tensor_list = [torch.zeros(2, 2, device=self.device) for _ in range(self.world_size)]
        tensor_list_h = list(tensor_list)
        tensor_list_h[1] = tensor_list_h[1].half()


        with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
            dist.all_gather(tensor_list_h, tensor)

        with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
            dist.all_gather(tensor_list, tensor_h)

        with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
            dist.all_gather_coalesced([tensor_list_h], tensor_list)
            dist.all_gather_coalesced([tensor_list], tensor_list_h)

        with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
            dist.all_reduce_coalesced(tensor_list_h)

        with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
            dist.reduce_scatter(tensor, tensor_list_h)

        with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
            dist.reduce_scatter(tensor_h, tensor_list)

        with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
            dist.all_to_all_single(tensor_h, tensor)

        with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
            dist.all_to_all(tensor_list_h, tensor_list)

        with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
            dist.all_to_all(tensor_list, tensor_list_h)

        with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
            dist.scatter(tensor, tensor_list_h)

        with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
            dist.gather(tensor_h, tensor_list)

        with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
            dist.gather(tensor, tensor_list_h)

        with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
            dist.scatter(tensor_h, tensor_list)

    def _test_tensor_dtype_complex(self, backend):
        store = dist.FileStore(self.file_name, self.world_size)
        dist.init_process_group(
            backend,
            world_size=self.world_size,
            rank=self.rank,
            store=store,
        )

        tensor = torch.rand(2, device=self.device)
        tensor_c = torch.view_as_complex(tensor)
        tensor_list = [torch.rand(2, device=self.device) for _ in range(self.world_size)]
        tensor_list_c = list(tensor_list)
        tensor_list_c[1] = torch.view_as_complex(tensor_list_c[1])

        dist.all_gather(tensor_list, tensor)
        dist.all_gather(tensor_list, tensor_c)
        dist.all_gather(tensor_list_c, tensor)
        dist.all_gather(tensor_list_c, tensor_c)

class CommTest(AbstractCommTest, MultiProcessTestCase):
    def setUp(self):
        super(CommTest, self).setUp()
        self._spawn_processes()

    def tearDown(self):
        super(CommTest, self).tearDown()
        try:
            os.remove(self.file_name)
        except OSError:
            pass

    def test_debug_level(self):
        try:
            del os.environ["TORCH_DISTRIBUTED_DEBUG"]
        except KeyError:
            pass

        dist.set_debug_level_from_env()
        # Default should be off
        default_debug_mode = dist.get_debug_level()
        self.assertEqual(default_debug_mode, dist.DebugLevel.OFF)
        mapping = {
            "OFF": dist.DebugLevel.OFF,
            "off": dist.DebugLevel.OFF,
            "oFf": dist.DebugLevel.OFF,
            "INFO": dist.DebugLevel.INFO,
            "info": dist.DebugLevel.INFO,
            "INfO": dist.DebugLevel.INFO,
            "DETAIL": dist.DebugLevel.DETAIL,
            "detail": dist.DebugLevel.DETAIL,
            "DeTaIl": dist.DebugLevel.DETAIL,
        }
        invalid_debug_modes = ["foo", 0, 1, -1]

        for mode in mapping.keys():
            os.environ["TORCH_DISTRIBUTED_DEBUG"] = str(mode)
            dist.set_debug_level_from_env()
            set_debug_mode = dist.get_debug_level()
            self.assertEqual(
                set_debug_mode,
                mapping[mode],
                f"Expected {mode} to map to {mapping[mode]} but got {set_debug_mode}",
            )

        for mode in invalid_debug_modes:
            os.environ["TORCH_DISTRIBUTED_DEBUG"] = str(mode)
            with self.assertRaisesRegex(RuntimeError, "The value of TORCH_DISTRIBUTED_DEBUG must"):
                dist.set_debug_level_from_env()


class DummyWork(dist._Work):
    def wait(self, timeout=5.0):
        if torch.cuda.is_available():
            torch.cuda.current_stream().synchronize()
        return True


class DummyProcessGroup(dist.ProcessGroup):
    def getBackendName(self):
        return "Dummy"

    def allgather(self, output_tensor_lists, input_tensor_list, opts=None):
        for output_tensor_list, input_tensor in zip(output_tensor_lists, input_tensor_list):
            for output_tensor in output_tensor_list:
                output_tensor.copy_(input_tensor)

        return DummyWork()

    def allreduce(self, tensor_list, opts=None):
        for tensor in tensor_list:
            tensor.add_(2)

        return DummyWork()

    def barrier(self, opts=None):
        store = c10d._get_default_store()
        key = "TEST:DummyProcessGroup:barrier"
        if self.rank() == 0:
            worker_count = 0
            # By default, TCPServer lives on rank 0. So rank 0 needs to make
            # sure that it does not exit too early before other ranks finish
            # using the store.
            # Note that, _store_based_barrier does not solve this problem, as
            # all ranks need to run at least one store.add(key, 0) before
            # exiting, but there is no guarantee that rank 0 is still alive at
            # that point.
            while worker_count < self.size() - 1:
                worker_count = store.add(key, 0)
        else:
            store.add(key, 1)

        return DummyWork()

    def broadcast(self, tensor_list, opts=None):
        for tensor in tensor_list:
            tensor.add_(1)

        return DummyWork()

    def reduce_scatter(self, output_tensor_list, input_tensor_lists, opts=None):
        for output_tensor, input_tensor_list in zip(output_tensor_list, input_tensor_lists):
            output_tensor.copy_(input_tensor_list[self.rank()])

        return DummyWork()

    def send(self, tensor_list, dst, tag=0):
        for tensor in tensor_list:
            tensor.add_(1)

        return DummyWork()

    def recv(self, tensor_list, src, tag=0):
        for tensor in tensor_list:
            tensor.add_(2)

        return DummyWork()


class PythonProcessGroupExtensionTest(MultiProcessTestCase):
    def setUp(self):
        super(PythonProcessGroupExtensionTest, self).setUp()
        self._spawn_processes()

    def tearDown(self):
        super(PythonProcessGroupExtensionTest, self).tearDown()
        try:
            os.remove(self.file_name)
        except OSError:
            pass

    def test_get_backend_name(self):
        dpg = DummyProcessGroup(0, 1)
        self.assertEqual("Dummy", dpg.name())

    def test_backend_class_attr(self):
        dist.Backend.register_backend(
            "dummy",
            PythonProcessGroupExtensionTest.create_dummy
        )
        self.assertEqual(dist.Backend.DUMMY, "DUMMY")
        self.assertEqual(
            dist.Backend._plugins["DUMMY"].creator_fn,
            PythonProcessGroupExtensionTest.create_dummy
        )

    class Options:
        def __init__(self):
            pass

        def create(self):
            pass

    @staticmethod
    def create_dummy(store, group_rank, group_size, timeout):
        return DummyProcessGroup(group_rank, group_size)

    def test_collectives(self):
        dist.Backend.register_backend("dummy", PythonProcessGroupExtensionTest.create_dummy)

        os.environ['MASTER_ADDR'] = 'localhost'
        os.environ['MASTER_PORT'] = '6789'
        dist.init_process_group("dummy", rank=self.rank, world_size=self.world_size)

        # test all_gather
        input_tensor = torch.ones(2, 2) * 7
        output_tensor_list = [torch.zeros(2, 2) for _ in range(self.world_size)]
        dist.all_gather(output_tensor_list, input_tensor)

        for tensor in output_tensor_list:
            self.assertEqual(tensor, input_tensor)

        # test all_reduce
        input_tensor = torch.ones(2, 2) * 7
        dist.all_reduce(input_tensor)
        self.assertEqual(input_tensor, torch.ones(2, 2) * 7 + 2)

        # test broadcast
        input_tensor = torch.zeros(2, 2)
        dist.broadcast(input_tensor, 0, async_op=True).wait()
        self.assertEqual(torch.ones(2, 2), input_tensor)

        # test reduce_scatter
        output_tensor = torch.zeros(2, 2)
        input_tensor_list = [torch.ones(2, 2) for _ in range(self.world_size)]
        dist.reduce_scatter(output_tensor, input_tensor_list)
        self.assertEqual(output_tensor, torch.zeros(2, 2) + 1)

        dist.barrier()
        dist.destroy_process_group()

    def test_send_recv(self):
        dist.Backend.register_backend("dummy", PythonProcessGroupExtensionTest.create_dummy)

        os.environ['MASTER_ADDR'] = 'localhost'
        os.environ['MASTER_PORT'] = '6789'
        dist.init_process_group("dummy", rank=self.rank, world_size=self.world_size)

        # test send
        input_tensor = torch.zeros(2, 2)
        dist.send(input_tensor, (self.rank + 1) % self.world_size)
        self.assertEqual(input_tensor, torch.zeros(2, 2) + 1)

        # test recv
        input_tensor = torch.zeros(2, 2)
        dist.recv(input_tensor, (self.rank + 1) % self.world_size)
        self.assertEqual(input_tensor, torch.zeros(2, 2) + 2)

        dist.barrier()
        # intentionally not calling into `destroy_process_group` as not all
        # user applications would explicitly that.


instantiate_parametrized_tests(CommonDistributedDataParallelTest)

class ProcessGroupWithDispatchedCollectivesTests(MultiProcessTestCase):
    @property
    def world_size(self):
        return 1

    def setUp(self):
        super(ProcessGroupWithDispatchedCollectivesTests, self).setUp()
        self._spawn_processes()

    def tearDown(self):
        super(ProcessGroupWithDispatchedCollectivesTests, self).tearDown()
        try:
            os.remove(self.file_name)
        except OSError:
            pass

    def _call_collective_with_varying_tensors(self, backend, collective, *args):
        # call collective with varying tensors to ensure that the tensors are
        # correctly dispatched

        # TODO: this will be updated in the future to not be backend specific
        device = "cuda" if backend == "nccl" else "cpu"
        # ensure supported devices (cpu, cuda) succeeds during dispatch call
        tensor = torch.zeros(2, 2, device=torch.device(device))
        collective(tensor, *args)

    # TODO: backend will be replaced with a non specified backend
    def _test_collectives(self, backend):
        store = dist.FileStore(self.file_name, self.world_size)
        dist.init_process_group(
            backend,
            world_size=self.world_size,
            rank=self.rank,
            store=store,
        )
        collectives_and_args = [
            (dist.broadcast, self.rank),
            (dist.all_reduce,)
        ]
        for collective, *args in collectives_and_args:
            with self.subTest(collective=collective, args=args):
                self._call_collective_with_varying_tensors(backend, collective, *args)

class CompilerTest(MultiProcessTestCase):
    def setUp(self):
        super(CompilerTest, self).setUp()
        self._spawn_processes()

    def tearDown(self):
        super(CompilerTest, self).tearDown()
        try:
            os.remove(self.file_name)
        except OSError:
            pass

    def _get_process_group(self):
        raise NotImplementedError("To be implemented by subclass")

    def _test_work_wait(self, x: torch.Tensor, comm_fn: Callable):
        pg = self._get_default_group()

        def fn(x: torch.Tensor) -> torch.Tensor:
            # N.B.: explicitly wrapping with CommTensor instead of updating
            # all_reduce Python implementation, as the later will need more
            # discussion.
            y = CommTensor(x + x)
            work, z = comm_fn(y, group=pg)
            # this wait() will be ignored in tracing mode as
            # ProxyTorchDispatchMode only supports torch.Tensor, _ProxyTensor,
            # and torch.nn.Parameter objects
            work.wait()
            return z * 2

        xx = x.clone()

        # trace fn into a GraphModule
        traced_fn = make_fx(fn)(xx)
        traced_fn.graph.lint()
        traced_fn.graph.eliminate_dead_code()

        # make sure the mul op indeed waits for comm
        for node in traced_fn.graph.nodes:
            if node.op == "call_function" and "mul.Tensor" in node.target.__name__:
                prev = node.args[0]
                curr = None
                waited = False
                commed = False
                while prev is not None and not commed:
                    curr = prev
                    waited |= all([
                        curr.op == "call_function",
                        curr.target == _wait_comm,
                    ])
                    commed |= all([
                        curr.op == "call_function",
                        CommTensor._is_supported(curr.target.__name__),
                    ])

                    prev = curr.args[0]

                self.assertTrue(waited)
                self.assertTrue(commed)

        # Update input to make sure we are not recording it as constant during
        # tracing.
        x += 1
        xx += 1

        y = fn(x)
        yy = traced_fn(xx)

        # check correctness
        self.assertEqual(y, yy)

        xx += 1
        yy = traced_fn(xx)
        self.assertFalse(y.allclose(yy))

    def _test_allreduce_work_wait(self, tensor):
        def comm_fn(tensor, group=None):
            work = dist.all_reduce(tensor, group=group, async_op=True)
            return work, tensor

        self._test_work_wait(tensor, comm_fn=comm_fn)

    def _test_allgather_work_wait(self, tensor):
        def comm_fn(tensor, group=None):
            out_tensors = [torch.zeros_like(tensor) for _ in range(group.size())]
            work = dist.all_gather(out_tensors, tensor, group=group, async_op=True)
            work.wait()

            return work, sum(out_tensors)

        self._test_work_wait(tensor, comm_fn=comm_fn)

    def _test_reduce_scatter_work_wait(self, tensor):
        def comm_fn(tensor, group=None):
            in_tensors = [tensor.clone() + i for i in range(group.size())]
            out_tensor = torch.zeros_like(tensor)
            work = dist.reduce_scatter(out_tensor, in_tensors, group=group, async_op=True)
            return work, out_tensor

        self._test_work_wait(tensor, comm_fn=comm_fn)

    def _test_broadcast_work_wait(self, tensor):
        def comm_fn(tensor, group=None):
            work = dist.broadcast(tensor, src=0, group=group, async_op=True)
            return work, tensor

        self._test_work_wait(tensor, comm_fn=comm_fn)

    def _test_scatter_work_wait(self, tensor):
        def comm_fn(tensor, group=None):
            in_tensors = [tensor + i for i in range(group.size())] if self.rank == 0 else None
            out_tensor = torch.zeros_like(tensor)
            work = dist.scatter(out_tensor, in_tensors, src=0, group=group, async_op=True)
            return work, out_tensor

        self._test_work_wait(tensor, comm_fn=comm_fn)

    def _test_nested_comm_tensor_wrapping(self, tensor):
        def comm_fn(tensor, group=None):
            work = dist.all_reduce(CommTensor(tensor), group=group, async_op=True)
            return work, tensor

        self._test_work_wait(tensor, comm_fn=comm_fn)

    def _test_consecutive_comm_work_wait(self, tensor):
        def comm_fn(tensor, group=None):
            work1 = dist.all_reduce(tensor, group=group, async_op=True)
            work1.wait()
            work2 = dist.all_reduce(tensor, group=group, async_op=True)
            return work2, tensor

        self._test_work_wait(tensor, comm_fn=comm_fn)


class ReduceOpTest(TestCase):

    def test_op_isinstance_of_reduceop(self):
        for reduce_op in (
            c10d.ReduceOp.SUM, c10d.ReduceOp.AVG, c10d.ReduceOp.PRODUCT, c10d.ReduceOp.MIN, c10d.ReduceOp.MAX,
            c10d.ReduceOp.BAND, c10d.ReduceOp.BOR, c10d.ReduceOp.BXOR,
        ):
            self.assertTrue(isinstance(reduce_op, c10d.ReduceOp))
        for scale in ([torch.tensor(1.0)], 2.0):
            self.assertTrue(isinstance(dist._make_nccl_premul_sum(scale), c10d.ReduceOp))


if __name__ == "__main__":
    assert (
        not torch.cuda._initialized
    ), "test_distributed must not have initialized CUDA context on main process"

    run_tests()