1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
|
# Owner(s): ["oncall: distributed"]
import copy
import os
import sys
import tempfile
import threading
import time
from contextlib import suppress
from datetime import timedelta
from itertools import product
from sys import platform
from typing import Callable
import torch
import torch.distributed as dist
if not dist.is_available():
print("distributed package not available, skipping tests", file=sys.stderr)
sys.exit(0)
import torch.distributed.distributed_c10d as c10d
import torch.distributed.algorithms.ddp_comm_hooks.powerSGD_hook as powerSGD
import torch.nn.functional as F
import torch.testing._internal.common_utils as common
from torch import nn
from torch.distributed._spmd.comm_tensor import _wait_comm, CommTensor
from torch.fx.experimental.proxy_tensor import make_fx
from torch.nn.parallel import DistributedDataParallel
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
skip_if_lt_x_gpu,
)
from torch.testing._internal.common_utils import (
TestCase,
load_tests,
run_tests,
TEST_WITH_DEV_DBG_ASAN,
instantiate_parametrized_tests,
parametrize
)
from torch.utils.checkpoint import checkpoint
if TEST_WITH_DEV_DBG_ASAN:
print("Multiprocessing spawn is not compatible with dev/dbg asan", file=sys.stderr)
sys.exit(0)
# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
if platform == "darwin":
LOOPBACK = "lo0"
else:
LOOPBACK = "lo"
torch.backends.cuda.matmul.allow_tf32 = False
def gpus_for_rank(world_size):
"""Multigpu tests are designed to simulate the multi nodes with multi
GPUs on each node. Nccl backend requires equal #GPUs in each process.
On a single node, all visible GPUs are evenly
divided to subsets, each process only uses a subset.
"""
visible_devices = list(range(torch.cuda.device_count()))
gpus_per_process = torch.cuda.device_count() // world_size
gpus_for_rank = []
for rank in range(world_size):
gpus_for_rank.append(
visible_devices[rank * gpus_per_process : (rank + 1) * gpus_per_process]
)
return gpus_for_rank
class AbstractTimeoutTest(object):
def _test_store_timeout(self, backend, init_method, c2p):
try:
dist.init_process_group(
backend=backend,
init_method=init_method,
world_size=1,
rank=0,
timeout=timedelta(seconds=1),
)
default_store = c10d._get_default_store()
tik = time.time()
with self.assertRaisesRegex(RuntimeError, "Timeout"):
default_store.get("nonexistent key")
tok = time.time()
dist.destroy_process_group()
c2p.append(float(tok - tik))
except RuntimeError as e:
# catch "Address already in use" error and report it to the main
# thread
c2p.append(e)
def _init_methods(self):
f = tempfile.NamedTemporaryFile(delete=False)
if sys.platform == "win32":
yield "file:///%s" % f.name.replace("\\", "/")
f.close()
else:
yield "file://%s" % f.name
f.close()
yield "tcp://127.0.0.1:%d" % common.find_free_port()
def _test_default_store_timeout(self, backend):
for init_method in self._init_methods():
c2p = []
t = threading.Thread(
target=self._test_store_timeout, args=(backend, init_method, c2p)
)
t.daemon = True
t.start()
t.join(5)
self.assertEqual(1, len(c2p))
if isinstance(c2p[0], float):
# waiting time should be 1s, use 3s to rule out false alarm
self.assertGreater(3, c2p[0])
elif isinstance(c2p[0], RuntimeError):
# let @retry_on_connect_failures handle the error
raise c2p[0]
else:
raise RuntimeError("Unexpected type {}".format(type(c2p[0])))
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(2, 10, bias=False)
self.fc2 = nn.Linear(10, 50, bias=False)
self.fc3 = nn.Linear(50, 4, bias=False)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return F.softmax(x, dim=1)
class DoubleGpuNet(nn.Module):
def __init__(self, gpus):
super(DoubleGpuNet, self).__init__()
self.fc1 = nn.Linear(2, 10, bias=False).to(gpus[0])
self.fc2 = nn.Linear(10, 50, bias=False).to(gpus[1])
self.fc3 = nn.Linear(50, 4, bias=False).to(gpus[1])
self.relu = nn.ReLU()
self.no_grad_param = nn.Parameter(
torch.tensor([2, 2]).long(), requires_grad=False
).to(gpus[0])
def forward(self, x):
dev0 = self.fc1.weight.device
dev1 = self.fc2.weight.device
x = self.relu(self.fc1(x.to(dev0)))
x = self.relu(self.fc2(x.to(dev1)))
x = self.fc3(x)
return F.softmax(x, dim=1).to(dev0)
class QuadraGpuNet(nn.Module):
def __init__(self, gpus):
super(QuadraGpuNet, self).__init__()
self.fc1 = nn.Linear(2, 10, bias=False).to(gpus[0])
self.fc2 = nn.Linear(10, 50, bias=False).to(gpus[1])
self.fc3 = nn.Linear(50, 4, bias=False).to(gpus[2])
self.fc4 = nn.Linear(4, 4, bias=False).to(gpus[3])
self.relu = nn.ReLU()
self.no_grad_param = nn.Parameter(
torch.tensor([2, 2]).long(), requires_grad=False
).to(gpus[0])
def forward(self, x):
dev0 = self.fc1.weight.device
dev1 = self.fc2.weight.device
dev2 = self.fc3.weight.device
dev3 = self.fc4.weight.device
x = self.relu(self.fc1(x.to(dev0)))
x = self.relu(self.fc2(x.to(dev1)))
x = self.relu(self.fc3(x.to(dev2)))
x = self.fc4(x.to(dev3))
return F.softmax(x, dim=1).to(dev0)
class ConvNet(nn.Module):
def __init__(self, gpus, layouts, dtypes):
super(ConvNet, self).__init__()
self.dtypes = dtypes
if isinstance(gpus, list):
self.layer_gpus = gpus
else:
gpus = [gpus] * 4
self.conv0 = torch.nn.Conv2d(8, 16, (2, 2)).to(
device=gpus[0], memory_format=layouts[0], dtype=dtypes[0]
)
self.conv1 = torch.nn.Conv2d(16, 32, (2, 2)).to(
device=gpus[1], memory_format=layouts[1], dtype=dtypes[1]
)
self.conv2 = torch.nn.Conv2d(32, 16, (2, 2)).to(
device=gpus[2], memory_format=layouts[2], dtype=dtypes[2]
)
self.conv3 = torch.nn.Conv2d(16, 8, (2, 2)).to(
device=gpus[3], memory_format=layouts[3], dtype=dtypes[3]
)
def forward(self, x):
x = x.to(self.dtypes[0])
# Could say
# x = self.conv0(x).to(device=self.conv1.weight.device, dtype=self.dtypes[1])
# etc. But I don't want to appeal to the weights' devices directly, because part of this test's purpose
# is to verify weights are where expected if the model gets replicated.
gpus = self.layer_gpus if hasattr(self, "layer_gpus") else [x.device] * 4
x = self.conv0(x).to(device=gpus[1], dtype=self.dtypes[1])
x = self.conv1(x).to(device=gpus[2], dtype=self.dtypes[2])
x = self.conv2(x).to(device=gpus[3], dtype=self.dtypes[3])
return self.conv3(x)
class Task(nn.Module):
def __init__(self):
super().__init__()
self.p = nn.Parameter(torch.ones(2, 2))
def forward(self, x):
return self.p + x
class ModuleForDdpCommHook(nn.Module):
def __init__(self):
super().__init__()
self.t0 = Task()
def forward(self, x, rank):
return self.t0(x + rank)
class SparseGradientModule(nn.Module):
def __init__(self):
super(SparseGradientModule, self).__init__()
self.embedding = nn.EmbeddingBag(10, 10, sparse=True)
def forward(self, x):
return F.softmax(self.embedding(x), dim=1)
class CommonDistributedDataParallelTest(object):
def tearDown(self):
# DistributedDataParallel test doesn't seem to call FileStore destructor
# TODO: investigate this test and the test is known to have issues
# Use this hack to remove files for that test
try:
os.remove(self.file_name)
except OSError:
pass
@property
def world_size(self):
return 2
def _prepare_single_device_module(
self,
process_group,
devices,
device_ids,
global_batch_size,
gradient_as_bucket_view=False,
):
model = Net()
device = devices[0] if devices else torch.device("cuda:%d" % self.rank)
ddp_model = DistributedDataParallel(
copy.deepcopy(model).to(device),
device_ids=device_ids,
process_group=process_group,
bucket_cap_mb=0.001,
gradient_as_bucket_view=gradient_as_bucket_view,
)
model.to(device)
input = torch.randn(global_batch_size, 2).to(device)
target = torch.randn(global_batch_size, 4).to(device)
return model, ddp_model, input, target
def _prepare_multi_device_module(
self,
process_group,
devices,
device_ids,
global_batch_size,
gradient_as_bucket_view=False,
):
self.assertTrue(
len(devices) == 2 or len(devices) == 4,
"unexpected devices for ddp tests {}".format(devices),
)
if len(devices) == 2:
model = DoubleGpuNet(devices)
elif len(devices) == 4:
model = QuadraGpuNet(devices)
ddp_model = DistributedDataParallel(
copy.deepcopy(model),
device_ids=device_ids,
process_group=process_group,
bucket_cap_mb=0.001,
gradient_as_bucket_view=gradient_as_bucket_view,
)
input = torch.randn(global_batch_size, 2).cuda(devices[0])
target = torch.randn(global_batch_size, 4)
return model, ddp_model, input, target
def _get_store(self):
return dist.FileStore(self.file_name, self.world_size)
def _get_process_group(self):
raise NotImplementedError("To be implemented by child class")
def _train_model(self, model, input_var, target, loss, run_checkpoint=False, use_reentrant=True):
model.train()
if run_checkpoint:
output = checkpoint(model, input_var, use_reentrant=use_reentrant)
else:
output = model(input_var)
l = loss(output, target)
l.backward()
def _test_ddp_checkpointing(
self,
input_model,
process_group,
use_bucket_view,
find_unused_parameters=False,
static_graph=False,
run_checkpoint=False,
use_reentrant=True,
allow_none_grads=False,
):
# to reproduce the same training results
torch.cuda.set_device(self.rank)
torch.manual_seed(31415)
model = copy.deepcopy(input_model).cuda()
ddp_model = copy.deepcopy(input_model).cuda()
ddp_model = nn.parallel.DistributedDataParallel(
ddp_model,
bucket_cap_mb=1,
gradient_as_bucket_view=use_bucket_view,
device_ids=[self.rank],
process_group=process_group,
find_unused_parameters=find_unused_parameters,
static_graph=static_graph,
)
self.assertEqual(
ddp_model._get_ddp_logging_data().get("static_graph", 0), static_graph
)
input, ddp_input, target, ddp_target = self._prepare_dummy_data()
loss = nn.MSELoss()
n_iters = 5
for i in range(n_iters):
model.zero_grad(set_to_none=False)
ddp_model.zero_grad(set_to_none=False)
self._train_model(model, input, target, loss, run_checkpoint=run_checkpoint, use_reentrant=use_reentrant)
self._train_model(
ddp_model, ddp_input, ddp_target, loss, run_checkpoint=run_checkpoint, use_reentrant=use_reentrant
)
for i, j in zip(model.parameters(), ddp_model.parameters()):
if not allow_none_grads:
self.assertTrue(i.grad is not None)
self.assertTrue(j.grad is not None)
self.assertEqual(i.grad, j.grad, rtol=1.3e-06, atol=5e-5)
# A list of tests for ddp with activation checkpointing
# when gradient_as_bucket_view=True, False.
# Most of the tests are referred to
# https://github.com/facebookresearch/fairscale/blob/main/tests/nn/pipe/test_checkpoint_ddp.py
class CheckpointOnceModule(nn.Module):
"""
Runs checkpoint for a single layer in the model.
"""
def __init__(self, use_reentrant=True):
super().__init__()
self.l1 = nn.Linear(20, 20)
self.l2 = nn.Linear(20, 20)
self.use_reentrant = use_reentrant
def forward(self, inp):
x = self.l1(inp)
x = checkpoint(self.l2, x, use_reentrant=self.use_reentrant)
return x
class CheckpointTwiceModule(CheckpointOnceModule):
"""
Runs checkpoint for the same layer twice in a model. This simulates use
cases such as pipeline parallel where the same layer can be checkpointed
more than one time.
"""
def __init__(self, use_reentrant=True):
super().__init__(use_reentrant=use_reentrant)
def forward(self, inp):
x = self.l1(inp)
x = checkpoint(self.l2, x, use_reentrant=self.use_reentrant)
x = checkpoint(self.l2, x, use_reentrant=self.use_reentrant)
return x
class CheckpointTwiceModuleWeightSharing(CheckpointTwiceModule):
"""
Similar to CheckpointTwiceModule but the weights are shared.
"""
def __init__(self, use_reentrant=True):
super().__init__(use_reentrant=use_reentrant)
# Share weights
self.l1.weight = self.l2.weight
def forward(self, inp):
x = self.l1(inp)
x = checkpoint(self.l2, x, use_reentrant=self.use_reentrant)
x = checkpoint(self.l2, x, use_reentrant=self.use_reentrant)
return x
class DynamicCheckpointTwiceModule(CheckpointTwiceModule):
def __init__(self, use_reentrant=True):
super().__init__(use_reentrant=use_reentrant)
self.count = 0
def forward(self, inp):
if self.count % 2:
x = checkpoint(self.l1, inp, use_reentrant=self.use_reentrant)
else:
x = checkpoint(self.l2, inp, use_reentrant=self.use_reentrant)
self.count += 1
return x
class DynamicCheckpointTwiceModuleWeightSharing(DynamicCheckpointTwiceModule):
def __init__(self, use_reentrant=True):
super().__init__(use_reentrant=use_reentrant)
# Share weights
self.l1.weight = self.l2.weight
def _prepare_dummy_data(self):
ddp_bs = 16
bs = ddp_bs * self.world_size
input = torch.rand((bs, 20), device="cuda", requires_grad=True)
target = torch.randn((bs, 20), device="cuda")
offset = self.rank * ddp_bs
ddp_input = input[offset : offset + ddp_bs]
ddp_target = target[offset : offset + ddp_bs]
return input, ddp_input, target, ddp_target
@skip_if_lt_x_gpu(2)
@parametrize("use_reentrant", [True, False])
def test_ddp_checkpointing_once(self, use_reentrant):
"""
DDP works as expected when layer is checkpointed only once.
"""
process_group = self._get_process_group()
for use_bucket_view, static_graph in product((False, True), (False, True)):
self._test_ddp_checkpointing(
self.CheckpointOnceModule(use_reentrant=use_reentrant),
process_group=process_group,
use_bucket_view=use_bucket_view,
static_graph=static_graph,
)
if static_graph:
# find_unused_parameters does not make a difference, since it is
# ignored for static graph.
self._test_ddp_checkpointing(
self.CheckpointOnceModule(),
process_group=process_group,
use_bucket_view=use_bucket_view,
static_graph=static_graph,
find_unused_parameters=True,
)
@skip_if_lt_x_gpu(2)
@parametrize("use_reentrant", [True, False])
def test_ddp_checkpointing_unused_params(self, use_reentrant):
"""
With reentrant autograd checkpointing impl, DDP will fail when there are
unused params in the model and no static graph training. With
non-reentrant checkpointing implementation, this works as expected.
"""
process_group = self._get_process_group()
for use_bucket_view in (True, False):
err_ctx = (
suppress() if not use_reentrant else
self.assertRaisesRegex(
RuntimeError,
"Expected to mark a variable ready only once."
)
)
with err_ctx:
model = self._test_ddp_checkpointing(
self.CheckpointOnceModule(use_reentrant=use_reentrant),
process_group=process_group,
use_bucket_view=use_bucket_view,
find_unused_parameters=True,
)
# test passes when static_graph is true
model = self._test_ddp_checkpointing(
self.CheckpointOnceModule(use_reentrant=use_reentrant),
process_group=process_group,
use_bucket_view=use_bucket_view,
find_unused_parameters=True,
static_graph=True,
)
@skip_if_lt_x_gpu(2)
@parametrize("use_reentrant", [True, False])
def test_ddp_checkpointing_twice(self, use_reentrant):
"""
Checkpoitning twice fails for non-static graph with reentrant checkpoint
implementation, succeeds with non-reentrant checkpoint implementation.
"""
process_group = self._get_process_group()
for use_bucket_view in (True, False):
err_ctx = (
suppress() if not use_reentrant else
self.assertRaisesRegex(
RuntimeError,
"Expected to mark a variable ready only once."
)
)
with err_ctx:
model = self._test_ddp_checkpointing(
self.CheckpointTwiceModule(use_reentrant=use_reentrant),
process_group=process_group,
use_bucket_view=use_bucket_view,
static_graph=False,
)
with err_ctx:
model = self._test_ddp_checkpointing(
self.CheckpointTwiceModule(use_reentrant=use_reentrant),
process_group=process_group,
use_bucket_view=use_bucket_view,
static_graph=False,
find_unused_parameters=True,
)
@skip_if_lt_x_gpu(2)
@parametrize("use_reentrant", [True, False])
def test_ddp_checkpointing_twice_static_graph(self, use_reentrant):
"""
Regardless of reentrant or non-reentrant checkpointing impl,
checkpointing twice works with static graph enabled.
"""
process_group = self._get_process_group()
for use_bucket_view in (True, False):
# Test passes when static_graph=True.
model = self._test_ddp_checkpointing(
self.CheckpointTwiceModule(use_reentrant=use_reentrant),
process_group=process_group,
use_bucket_view=use_bucket_view,
static_graph=True,
)
@skip_if_lt_x_gpu(2)
def test_ddp_checkpointing_dynamic_module(self):
"""
Dynamic module can be checkpointed, multiple times, with non-reentrant
checkpointing implementation.
"""
process_group = self._get_process_group()
for use_bucket_view in (True, False):
model = self._test_ddp_checkpointing(
self.DynamicCheckpointTwiceModule(use_reentrant=False),
process_group=process_group,
use_bucket_view=use_bucket_view,
static_graph=False,
find_unused_parameters=True,
# Grads can be none sometimes due to dynamic module not using
# all params.
allow_none_grads=True
)
@skip_if_lt_x_gpu(2)
def test_ddp_checkpointing_dynamic_weight_sharing(self):
"""
Dynamic module can be checkpointed multiple times with weight sharing
using non-reentrant checkpointing implementation.
"""
process_group = self._get_process_group()
for use_bucket_view in (True, False):
model = self._test_ddp_checkpointing(
self.DynamicCheckpointTwiceModuleWeightSharing(use_reentrant=False),
process_group=process_group,
use_bucket_view=use_bucket_view,
static_graph=False,
find_unused_parameters=True,
# Grads can be none sometimes due to dynamic module not using
# all params.
allow_none_grads=True
)
# DDP works as expected if there is weight sharing among layers
@skip_if_lt_x_gpu(2)
@parametrize("use_reentrant", [True, False])
def test_ddp_checkpointing_weight_sharing(self, use_reentrant):
"""
Test that checkpointing with weight sharing works.
"""
process_group = self._get_process_group()
torch.cuda.set_device(self.rank)
for use_bucket_view, static_graph in product((False, True), (False, True)):
torch.manual_seed(31415)
l1 = nn.Linear(20, 20)
l2 = nn.Linear(20, 20)
l1.weight = l2.weight
model = nn.Sequential(l1, l2)
# TODO: non-reentrant based checkpointing of DDP module with
# static_graph runs into the below issue, see
# https://github.com/pytorch/pytorch/issues/70865 and
# https://github.com/pytorch/pytorch/issues/58111 for details.
err_ctx = (
self.assertRaisesRegex(
RuntimeError,
"Your training graph has changed in this iteration"
) if static_graph and not use_reentrant else suppress()
)
with err_ctx:
self._test_ddp_checkpointing(
model,
process_group=process_group,
use_bucket_view=use_bucket_view,
static_graph=static_graph,
run_checkpoint=True,
use_reentrant=use_reentrant,
)
@skip_if_lt_x_gpu(2)
def test_ddp_checkpointing_twice_weight_sharing(self):
"""
Checkpointing should work with static graph in the case of checkpointing
same layer twice and having weights shared acrosss layers.
"""
process_group = self._get_process_group()
torch.cuda.set_device(self.rank)
for use_bucket_view in (True, False):
model = self._test_ddp_checkpointing(
self.CheckpointTwiceModuleWeightSharing(),
process_group=process_group,
use_bucket_view=use_bucket_view,
static_graph=True,
)
def test_invalid_powerSGD_state(self):
for start_powerSGD_iter, use_error_feedback, warm_start in product(
[0, 1], [True, False], [True, False]
):
if not use_error_feedback and not warm_start:
continue
with self.assertRaisesRegex(
ValueError,
"Expect `start_powerSGD_iter` > 1 if `use_error_feedback` or `warm_start` is enabled, "
"because PowerSGD can only be applied after the first two iterations in DDP.",
):
state = powerSGD.PowerSGDState(
process_group=None,
matrix_approximation_rank=1,
start_powerSGD_iter=start_powerSGD_iter,
use_error_feedback=use_error_feedback,
warm_start=warm_start,
)
def _test_ddp_with_process_group(
self,
process_group,
devices,
device_ids,
multi_device=False,
gradient_as_bucket_view=False,
):
"""
Note: we pass down `device_ids` all the way to DistributedDataParallel
as part of the test. Below you find tests that either use a list of
integers, a list of `torch.Device` instances, or an empty list.
The `devices` argument is used to control placement of the model and
must always be specified as list of `torch.Device` instances.
"""
local_batch_size = 1 if devices is None else len(devices)
global_batch_size = self.world_size * local_batch_size
if multi_device:
model, ddp_model, input, target = self._prepare_multi_device_module(
process_group,
devices,
device_ids,
global_batch_size,
gradient_as_bucket_view,
)
ddp_logging_data = ddp_model._get_ddp_logging_data()
self.assertTrue(ddp_logging_data.get("is_multi_device_module"))
else:
model, ddp_model, input, target = self._prepare_single_device_module(
process_group,
devices,
device_ids,
global_batch_size,
gradient_as_bucket_view,
)
ddp_logging_data = ddp_model._get_ddp_logging_data()
self.assertFalse(ddp_logging_data.get("is_multi_device_module"))
def step_model(model, input, target):
model.train()
output = model(input)
loss = F.mse_loss(output, target.to(output.device))
loss.backward()
def update_parameters(model):
for param in model.parameters():
with torch.no_grad():
param -= param.grad
param.grad = None
# check two model parameters over 2 iterations
for iteration in range(2):
# single cpu/gpu training
step_model(model, input, target)
# DDP training, DDP scatters subsets of input_cpu to nodes/GPUs
step_model(
ddp_model,
input[
self.rank * local_batch_size : (self.rank + 1) * local_batch_size
],
target[
self.rank * local_batch_size : (self.rank + 1) * local_batch_size
],
)
# Update weights and run a second iteration to shake out errors
update_parameters(model)
update_parameters(ddp_model)
self.assertEqual(
len(list(model.parameters())), len(list(ddp_model.parameters()))
)
for i, j in zip(model.parameters(), ddp_model.parameters()):
self.assertEqual(i, j, rtol=1.3e-06, atol=5e-5)
# Shuffle the input so that DDP input is different
torch.manual_seed(1337 + iteration)
input = input[torch.randperm(global_batch_size)]
def _gpu_model_with_ddp_comm_hook(
self, process_group, hook=None, gradient_as_bucket_view=False, state=None
):
device_id = gpus_for_rank(self.world_size)[self.rank][0]
gpu_model = DistributedDataParallel(
ModuleForDdpCommHook().to(device_id),
device_ids=[device_id],
process_group=process_group,
gradient_as_bucket_view=gradient_as_bucket_view,
)
# Register a DDP communication hook if any.
if hook is not None:
gpu_model.register_comm_hook(state, hook)
return gpu_model
def _gpu_model_with_builtin_ddp_comm_hook(
self, process_group, hook=None, gradient_as_bucket_view=False
):
device_id = gpus_for_rank(self.world_size)[self.rank][0]
gpu_model = DistributedDataParallel(
ModuleForDdpCommHook().to(device_id),
device_ids=[device_id],
process_group=process_group,
gradient_as_bucket_view=gradient_as_bucket_view,
)
# Register a built-in DDP communication hook if defined
if hook is not None:
gpu_model._register_builtin_comm_hook(hook)
return gpu_model
def _run_and_verify_hook(self, model, input, expected_grad):
# Run forward
output = model(input, self.rank)
# Run backward
output.mean().backward()
[self.assertEqual(p.grad, expected_grad) for p in model.parameters()]
def _simple_hook(
self, state: object, bucket: dist.GradBucket
) -> torch.futures.Future[torch.Tensor]:
fut = torch.futures.Future()
fut.set_result(torch.ones_like(bucket.buffer()))
def fut_then(fut):
# Add ones to fut's result.
t = fut.value()
return t + torch.ones_like(t)
return fut.then(fut_then)
def _test_not_nan(self, model, x):
y = model(x)
self.assertFalse(y.isnan().any().item())
y.sum().backward()
for p in model.parameters():
self.assertFalse(p.grad.isnan().any().item())
@skip_if_lt_x_gpu(2)
def test_sync_batch_norm_only_empty_input(self):
pg = self._get_process_group()
model = torch.nn.Sequential(
nn.BatchNorm2d(2),
).to(device=self.rank)
model = DistributedDataParallel(
model,
device_ids=[self.rank],
process_group=pg,
)
model = nn.SyncBatchNorm.convert_sync_batchnorm(
model,
process_group=pg,
)
model.train()
# only rank 0 receives empty inputs
x = torch.zeros(
(1 if self.rank != 0 else 0, 2, 11, 13),
dtype=torch.float32,
device=self.rank
)
# input requires grad, this will trigger the collective communication
# in the backward pass
x.requires_grad = True
self._test_not_nan(model, x)
# input does not requires grad
x.requires_grad = False
self._test_not_nan(model, x)
# all ranks receive empty inputs
x = torch.zeros(
(0, 2, 11, 13),
dtype=torch.float32,
device=self.rank
)
# input requires grad, this will trigger the collective communication
# in the backward pass
x.requires_grad = True
self._test_not_nan(model, x)
# input does not requires grad
x.requires_grad = False
self._test_not_nan(model, x)
@skip_if_lt_x_gpu(2)
def test_sync_batch_norm_empty_input(self):
pg = self._get_process_group()
model = torch.nn.Sequential(
nn.Conv2d(2, 2, 3),
nn.BatchNorm2d(2),
nn.Linear(28, 2),
).to(device=self.rank)
model = DistributedDataParallel(
model,
device_ids=[self.rank],
process_group=pg,
)
model = nn.SyncBatchNorm.convert_sync_batchnorm(
model,
process_group=pg,
)
model.train()
# only rank 0 receives empty inputs
x = torch.zeros(
(3 if self.rank != 0 else 0, 2, 30, 30),
dtype=torch.float32,
device=self.rank
)
self._test_not_nan(model, x)
# all ranks receive empty inputs
x = torch.zeros(
(0, 2, 30, 30),
dtype=torch.float32,
device=self.rank
)
self._test_not_nan(model, x)
class ComputeBucketAssignmentTest(TestCase):
def test_single_limit_single_dtype(self):
tensors = [
torch.empty([100], dtype=torch.float),
torch.empty([200], dtype=torch.float),
torch.empty([100], dtype=torch.float),
torch.empty([50], dtype=torch.float),
]
result, per_bucket_size_limits = dist._compute_bucket_assignment_by_size(
tensors, [400]
)
self.assertTrue(all(size_lim == 400 for size_lim in per_bucket_size_limits))
self.assertEqual([[0], [1], [2], [3]], result)
def test_single_limit_multi_dtype(self):
tensors = [
torch.empty([50], dtype=torch.float),
torch.empty([25], dtype=torch.double),
torch.empty([50], dtype=torch.float),
torch.empty([25], dtype=torch.double),
torch.empty([50], dtype=torch.float),
torch.empty([25], dtype=torch.double),
]
result, per_bucket_size_limits = dist._compute_bucket_assignment_by_size(
tensors, [400]
)
self.assertTrue(all(size_lim == 400 for size_lim in per_bucket_size_limits))
self.assertEqual([[0, 2], [1, 3], [4], [5]], result)
def test_multi_limit_single_dtype(self):
tensors = [
torch.empty([10], dtype=torch.float),
torch.empty([10], dtype=torch.float),
torch.empty([10], dtype=torch.float),
torch.empty([10], dtype=torch.float),
]
result, per_bucket_size_limits = dist._compute_bucket_assignment_by_size(
tensors, [40, 80]
)
self.assertEqual(per_bucket_size_limits, [40, 80, 80])
self.assertEqual([[0], [1, 2], [3]], result)
def test_multi_limit_multi_dtype(self):
tensors = [
torch.empty([50], dtype=torch.float),
torch.empty([25], dtype=torch.double),
torch.empty([50], dtype=torch.float),
torch.empty([25], dtype=torch.double),
torch.empty([50], dtype=torch.float),
torch.empty([25], dtype=torch.double),
]
result, per_bucket_size_limits = dist._compute_bucket_assignment_by_size(
tensors, [200, 400]
)
self.assertEqual([[0], [1], [2, 4], [3, 5]], result)
self.assertEqual(per_bucket_size_limits, [200, 200, 400, 400])
class AbstractCommTest(object):
@property
def op_timeout_sec(self):
return 1
@property
def world_size(self):
return 2
@property
def device(self):
self.fail("test subclass didn't override device")
def _verify_sequence_number_across_pg(self, pg, verify_pg):
seq_num = pg._get_sequence_number_for_group()
obj_list = [None for _ in range(dist.get_world_size(verify_pg))]
# We use a separate pg to verify the sequence numbers, otherwise these
# collectives will themselves increment the sequence number.
dist.all_gather_object(obj_list, seq_num, group=verify_pg)
self.assertEqual(len(set(obj_list)), 1)
return obj_list[0]
def _test_sequence_num_incremented(self, process_group, ranks):
# verify initial sequence numbers. Use a distinct process group for
# verification to keep counts as expected with respect to process_group.
verify_pg = dist.new_group(
ranks=ranks,
backend="gloo",
)
assert dist.get_world_size(process_group) == dist.get_world_size(verify_pg)
initial_num = (
self._verify_sequence_number_across_pg(
pg=process_group, verify_pg=verify_pg
)
if not c10d._rank_not_in_group(process_group)
else -1
)
# Verify sequence numbers are appropriately incremented
for i in range(10):
t = torch.ones(1, device=torch.cuda.current_device())
dist.all_reduce(t, group=process_group)
if not c10d._rank_not_in_group(process_group):
seq_num = self._verify_sequence_number_across_pg(
pg=process_group,
verify_pg=verify_pg,
)
self.assertEqual(initial_num + i + 1, seq_num)
if dist.get_world_size(process_group) > 2:
# Test when certain ranks don't call collectives
if dist.get_rank(process_group) not in [0, 2]:
dist.all_reduce(t, group=process_group, async_op=True)
# Now ranks 0 and 2 should be lagging by 1.
if not c10d._rank_not_in_group(process_group):
seq_num = process_group._get_sequence_number_for_group()
rank = dist.get_rank(process_group)
obj_list = [None for _ in range(dist.get_world_size(verify_pg))]
dist.all_gather_object(obj_list, (rank, seq_num), group=verify_pg)
rank_to_seq_num = {rank: num for (rank, num) in obj_list}
self.assertEqual(len(set(rank_to_seq_num.values())), 2)
self.assertEqual(rank_to_seq_num[0], rank_to_seq_num[2])
expected_same = {
rank_to_seq_num[i]
for i in rank_to_seq_num.keys()
if i not in [0, 2]
}
self.assertEqual(len(expected_same), 1)
self.assertEqual(rank_to_seq_num[0] + 1, rank_to_seq_num[1])
def _test_sequence_num_incremented_default_group(self, backend_name):
torch.cuda.set_device(self.rank)
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend_name,
world_size=self.world_size,
rank=self.rank,
store=store,
)
self._test_sequence_num_incremented(
c10d._get_default_group(),
ranks=list(i for i in range(dist.get_world_size())),
)
def _test_sequence_num_incremented_subgroup(self, backend_name):
torch.cuda.set_device(self.rank)
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend_name,
world_size=self.world_size,
rank=self.rank,
store=store,
)
subgroup_ranks = [0, 1, 2]
subgroup = dist.new_group(subgroup_ranks)
self._test_sequence_num_incremented(subgroup, subgroup_ranks)
def _test_sequence_num_set_default_pg(self, backend):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend,
world_size=self.world_size,
rank=self.rank,
store=store,
)
default_pg = c10d._get_default_group()
seq_num = default_pg._get_sequence_number_for_group()
obj_list = [None for _ in range(dist.get_world_size())]
dist.all_gather_object(obj_list, seq_num)
self.assertEqual(len(set(obj_list)), 1)
def _test_sequence_num_set_new_group(self, backend):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend,
world_size=self.world_size,
rank=self.rank,
store=store,
)
subgroup = dist.new_group([0, 1])
if not c10d._rank_not_in_group(subgroup):
subgroup_seq = subgroup._get_sequence_number_for_group()
obj_list = [None for _ in range(dist.get_world_size(subgroup))]
dist.all_gather_object(obj_list, subgroup_seq, group=subgroup)
self.assertEqual(len(set(obj_list)), 1)
def _test_warn_not_in_group(self, backend):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend,
world_size=self.world_size,
rank=self.rank,
store=store,
)
in_group_ranks = list(filter(lambda x: x % 2 == 0, range(self.world_size)))
group = dist.new_group(in_group_ranks)
x = torch.zeros(2, 2).cuda(self.rank)
xs = [torch.zeros(2, 2).cuda(self.rank) for _ in range(len(in_group_ranks))]
if self.rank not in in_group_ranks:
msg = ".*{}.*does not belong to.*"
with self.assertWarnsOnceRegex(UserWarning, msg.format("all_gather")):
dist.all_gather(xs, x, group=group)
with self.assertWarnsOnceRegex(UserWarning, msg.format("all_reduce")):
dist.all_reduce(x, group=group)
with self.assertWarnsOnceRegex(UserWarning, msg.format("barrier")):
dist.barrier(group=group)
with self.assertWarnsOnceRegex(UserWarning, msg.format("broadcast")):
dist.broadcast(x, src=0, group=group)
else:
dist.all_gather(xs, x, group=group)
dist.all_reduce(x, group=group)
dist.barrier(group=group)
dist.broadcast(x, src=0, group=group)
def _test_rank_membership(self, backend):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend,
world_size=self.world_size,
rank=self.rank,
store=store,
)
self.assertTrue(self.world_size > 1)
group = dist.new_group(ranks=[1])
self.assertEqual(dist.get_group_rank(group, 1), 0)
with self.assertRaisesRegex(RuntimeError, "not part of group"):
dist.get_group_rank(group, 0)
with self.assertRaisesRegex(RuntimeError, "not registered"):
dist.get_group_rank(DummyProcessGroup(self.rank, self.world_size), 0)
self.assertEqual(dist.get_global_rank(group, 0), 1)
with self.assertRaisesRegex(RuntimeError, "not part of group"):
dist.get_global_rank(group, 1)
with self.assertRaisesRegex(RuntimeError, "not registered"):
dist.get_global_rank(DummyProcessGroup(self.rank, self.world_size), 0)
self.assertEqual(dist.get_process_group_ranks(group), [1])
def _test_tensor_dtype_mismatch(self, backend):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend,
world_size=self.world_size,
rank=self.rank,
store=store,
)
tensor = torch.ones(2, 2, device=self.device) * 7
tensor_h = tensor.half()
tensor_list = [torch.zeros(2, 2, device=self.device) for _ in range(self.world_size)]
tensor_list_h = list(tensor_list)
tensor_list_h[1] = tensor_list_h[1].half()
with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
dist.all_gather(tensor_list_h, tensor)
with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
dist.all_gather(tensor_list, tensor_h)
with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
dist.all_gather_coalesced([tensor_list_h], tensor_list)
dist.all_gather_coalesced([tensor_list], tensor_list_h)
with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
dist.all_reduce_coalesced(tensor_list_h)
with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
dist.reduce_scatter(tensor, tensor_list_h)
with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
dist.reduce_scatter(tensor_h, tensor_list)
with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
dist.all_to_all_single(tensor_h, tensor)
with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
dist.all_to_all(tensor_list_h, tensor_list)
with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
dist.all_to_all(tensor_list, tensor_list_h)
with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
dist.scatter(tensor, tensor_list_h)
with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
dist.gather(tensor_h, tensor_list)
with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
dist.gather(tensor, tensor_list_h)
with self.assertRaisesRegex(RuntimeError, "tensors with different dtypes"):
dist.scatter(tensor_h, tensor_list)
def _test_tensor_dtype_complex(self, backend):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend,
world_size=self.world_size,
rank=self.rank,
store=store,
)
tensor = torch.rand(2, device=self.device)
tensor_c = torch.view_as_complex(tensor)
tensor_list = [torch.rand(2, device=self.device) for _ in range(self.world_size)]
tensor_list_c = list(tensor_list)
tensor_list_c[1] = torch.view_as_complex(tensor_list_c[1])
dist.all_gather(tensor_list, tensor)
dist.all_gather(tensor_list, tensor_c)
dist.all_gather(tensor_list_c, tensor)
dist.all_gather(tensor_list_c, tensor_c)
class CommTest(AbstractCommTest, MultiProcessTestCase):
def setUp(self):
super(CommTest, self).setUp()
self._spawn_processes()
def tearDown(self):
super(CommTest, self).tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
def test_debug_level(self):
try:
del os.environ["TORCH_DISTRIBUTED_DEBUG"]
except KeyError:
pass
dist.set_debug_level_from_env()
# Default should be off
default_debug_mode = dist.get_debug_level()
self.assertEqual(default_debug_mode, dist.DebugLevel.OFF)
mapping = {
"OFF": dist.DebugLevel.OFF,
"off": dist.DebugLevel.OFF,
"oFf": dist.DebugLevel.OFF,
"INFO": dist.DebugLevel.INFO,
"info": dist.DebugLevel.INFO,
"INfO": dist.DebugLevel.INFO,
"DETAIL": dist.DebugLevel.DETAIL,
"detail": dist.DebugLevel.DETAIL,
"DeTaIl": dist.DebugLevel.DETAIL,
}
invalid_debug_modes = ["foo", 0, 1, -1]
for mode in mapping.keys():
os.environ["TORCH_DISTRIBUTED_DEBUG"] = str(mode)
dist.set_debug_level_from_env()
set_debug_mode = dist.get_debug_level()
self.assertEqual(
set_debug_mode,
mapping[mode],
f"Expected {mode} to map to {mapping[mode]} but got {set_debug_mode}",
)
for mode in invalid_debug_modes:
os.environ["TORCH_DISTRIBUTED_DEBUG"] = str(mode)
with self.assertRaisesRegex(RuntimeError, "The value of TORCH_DISTRIBUTED_DEBUG must"):
dist.set_debug_level_from_env()
class DummyWork(dist._Work):
def wait(self, timeout=5.0):
if torch.cuda.is_available():
torch.cuda.current_stream().synchronize()
return True
class DummyProcessGroup(dist.ProcessGroup):
def getBackendName(self):
return "Dummy"
def allgather(self, output_tensor_lists, input_tensor_list, opts=None):
for output_tensor_list, input_tensor in zip(output_tensor_lists, input_tensor_list):
for output_tensor in output_tensor_list:
output_tensor.copy_(input_tensor)
return DummyWork()
def allreduce(self, tensor_list, opts=None):
for tensor in tensor_list:
tensor.add_(2)
return DummyWork()
def barrier(self, opts=None):
store = c10d._get_default_store()
key = "TEST:DummyProcessGroup:barrier"
if self.rank() == 0:
worker_count = 0
# By default, TCPServer lives on rank 0. So rank 0 needs to make
# sure that it does not exit too early before other ranks finish
# using the store.
# Note that, _store_based_barrier does not solve this problem, as
# all ranks need to run at least one store.add(key, 0) before
# exiting, but there is no guarantee that rank 0 is still alive at
# that point.
while worker_count < self.size() - 1:
worker_count = store.add(key, 0)
else:
store.add(key, 1)
return DummyWork()
def broadcast(self, tensor_list, opts=None):
for tensor in tensor_list:
tensor.add_(1)
return DummyWork()
def reduce_scatter(self, output_tensor_list, input_tensor_lists, opts=None):
for output_tensor, input_tensor_list in zip(output_tensor_list, input_tensor_lists):
output_tensor.copy_(input_tensor_list[self.rank()])
return DummyWork()
def send(self, tensor_list, dst, tag=0):
for tensor in tensor_list:
tensor.add_(1)
return DummyWork()
def recv(self, tensor_list, src, tag=0):
for tensor in tensor_list:
tensor.add_(2)
return DummyWork()
class PythonProcessGroupExtensionTest(MultiProcessTestCase):
def setUp(self):
super(PythonProcessGroupExtensionTest, self).setUp()
self._spawn_processes()
def tearDown(self):
super(PythonProcessGroupExtensionTest, self).tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
def test_get_backend_name(self):
dpg = DummyProcessGroup(0, 1)
self.assertEqual("Dummy", dpg.name())
def test_backend_class_attr(self):
dist.Backend.register_backend(
"dummy",
PythonProcessGroupExtensionTest.create_dummy
)
self.assertEqual(dist.Backend.DUMMY, "DUMMY")
self.assertEqual(
dist.Backend._plugins["DUMMY"].creator_fn,
PythonProcessGroupExtensionTest.create_dummy
)
class Options:
def __init__(self):
pass
def create(self):
pass
@staticmethod
def create_dummy(store, group_rank, group_size, timeout):
return DummyProcessGroup(group_rank, group_size)
def test_collectives(self):
dist.Backend.register_backend("dummy", PythonProcessGroupExtensionTest.create_dummy)
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '6789'
dist.init_process_group("dummy", rank=self.rank, world_size=self.world_size)
# test all_gather
input_tensor = torch.ones(2, 2) * 7
output_tensor_list = [torch.zeros(2, 2) for _ in range(self.world_size)]
dist.all_gather(output_tensor_list, input_tensor)
for tensor in output_tensor_list:
self.assertEqual(tensor, input_tensor)
# test all_reduce
input_tensor = torch.ones(2, 2) * 7
dist.all_reduce(input_tensor)
self.assertEqual(input_tensor, torch.ones(2, 2) * 7 + 2)
# test broadcast
input_tensor = torch.zeros(2, 2)
dist.broadcast(input_tensor, 0, async_op=True).wait()
self.assertEqual(torch.ones(2, 2), input_tensor)
# test reduce_scatter
output_tensor = torch.zeros(2, 2)
input_tensor_list = [torch.ones(2, 2) for _ in range(self.world_size)]
dist.reduce_scatter(output_tensor, input_tensor_list)
self.assertEqual(output_tensor, torch.zeros(2, 2) + 1)
dist.barrier()
dist.destroy_process_group()
def test_send_recv(self):
dist.Backend.register_backend("dummy", PythonProcessGroupExtensionTest.create_dummy)
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '6789'
dist.init_process_group("dummy", rank=self.rank, world_size=self.world_size)
# test send
input_tensor = torch.zeros(2, 2)
dist.send(input_tensor, (self.rank + 1) % self.world_size)
self.assertEqual(input_tensor, torch.zeros(2, 2) + 1)
# test recv
input_tensor = torch.zeros(2, 2)
dist.recv(input_tensor, (self.rank + 1) % self.world_size)
self.assertEqual(input_tensor, torch.zeros(2, 2) + 2)
dist.barrier()
# intentionally not calling into `destroy_process_group` as not all
# user applications would explicitly that.
instantiate_parametrized_tests(CommonDistributedDataParallelTest)
class ProcessGroupWithDispatchedCollectivesTests(MultiProcessTestCase):
@property
def world_size(self):
return 1
def setUp(self):
super(ProcessGroupWithDispatchedCollectivesTests, self).setUp()
self._spawn_processes()
def tearDown(self):
super(ProcessGroupWithDispatchedCollectivesTests, self).tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
def _call_collective_with_varying_tensors(self, backend, collective, *args):
# call collective with varying tensors to ensure that the tensors are
# correctly dispatched
# TODO: this will be updated in the future to not be backend specific
device = "cuda" if backend == "nccl" else "cpu"
# ensure supported devices (cpu, cuda) succeeds during dispatch call
tensor = torch.zeros(2, 2, device=torch.device(device))
collective(tensor, *args)
# TODO: backend will be replaced with a non specified backend
def _test_collectives(self, backend):
store = dist.FileStore(self.file_name, self.world_size)
dist.init_process_group(
backend,
world_size=self.world_size,
rank=self.rank,
store=store,
)
collectives_and_args = [
(dist.broadcast, self.rank),
(dist.all_reduce,)
]
for collective, *args in collectives_and_args:
with self.subTest(collective=collective, args=args):
self._call_collective_with_varying_tensors(backend, collective, *args)
class CompilerTest(MultiProcessTestCase):
def setUp(self):
super(CompilerTest, self).setUp()
self._spawn_processes()
def tearDown(self):
super(CompilerTest, self).tearDown()
try:
os.remove(self.file_name)
except OSError:
pass
def _get_process_group(self):
raise NotImplementedError("To be implemented by subclass")
def _test_work_wait(self, x: torch.Tensor, comm_fn: Callable):
pg = self._get_default_group()
def fn(x: torch.Tensor) -> torch.Tensor:
# N.B.: explicitly wrapping with CommTensor instead of updating
# all_reduce Python implementation, as the later will need more
# discussion.
y = CommTensor(x + x)
work, z = comm_fn(y, group=pg)
# this wait() will be ignored in tracing mode as
# ProxyTorchDispatchMode only supports torch.Tensor, _ProxyTensor,
# and torch.nn.Parameter objects
work.wait()
return z * 2
xx = x.clone()
# trace fn into a GraphModule
traced_fn = make_fx(fn)(xx)
traced_fn.graph.lint()
traced_fn.graph.eliminate_dead_code()
# make sure the mul op indeed waits for comm
for node in traced_fn.graph.nodes:
if node.op == "call_function" and "mul.Tensor" in node.target.__name__:
prev = node.args[0]
curr = None
waited = False
commed = False
while prev is not None and not commed:
curr = prev
waited |= all([
curr.op == "call_function",
curr.target == _wait_comm,
])
commed |= all([
curr.op == "call_function",
CommTensor._is_supported(curr.target.__name__),
])
prev = curr.args[0]
self.assertTrue(waited)
self.assertTrue(commed)
# Update input to make sure we are not recording it as constant during
# tracing.
x += 1
xx += 1
y = fn(x)
yy = traced_fn(xx)
# check correctness
self.assertEqual(y, yy)
xx += 1
yy = traced_fn(xx)
self.assertFalse(y.allclose(yy))
def _test_allreduce_work_wait(self, tensor):
def comm_fn(tensor, group=None):
work = dist.all_reduce(tensor, group=group, async_op=True)
return work, tensor
self._test_work_wait(tensor, comm_fn=comm_fn)
def _test_allgather_work_wait(self, tensor):
def comm_fn(tensor, group=None):
out_tensors = [torch.zeros_like(tensor) for _ in range(group.size())]
work = dist.all_gather(out_tensors, tensor, group=group, async_op=True)
work.wait()
return work, sum(out_tensors)
self._test_work_wait(tensor, comm_fn=comm_fn)
def _test_reduce_scatter_work_wait(self, tensor):
def comm_fn(tensor, group=None):
in_tensors = [tensor.clone() + i for i in range(group.size())]
out_tensor = torch.zeros_like(tensor)
work = dist.reduce_scatter(out_tensor, in_tensors, group=group, async_op=True)
return work, out_tensor
self._test_work_wait(tensor, comm_fn=comm_fn)
def _test_broadcast_work_wait(self, tensor):
def comm_fn(tensor, group=None):
work = dist.broadcast(tensor, src=0, group=group, async_op=True)
return work, tensor
self._test_work_wait(tensor, comm_fn=comm_fn)
def _test_scatter_work_wait(self, tensor):
def comm_fn(tensor, group=None):
in_tensors = [tensor + i for i in range(group.size())] if self.rank == 0 else None
out_tensor = torch.zeros_like(tensor)
work = dist.scatter(out_tensor, in_tensors, src=0, group=group, async_op=True)
return work, out_tensor
self._test_work_wait(tensor, comm_fn=comm_fn)
def _test_nested_comm_tensor_wrapping(self, tensor):
def comm_fn(tensor, group=None):
work = dist.all_reduce(CommTensor(tensor), group=group, async_op=True)
return work, tensor
self._test_work_wait(tensor, comm_fn=comm_fn)
def _test_consecutive_comm_work_wait(self, tensor):
def comm_fn(tensor, group=None):
work1 = dist.all_reduce(tensor, group=group, async_op=True)
work1.wait()
work2 = dist.all_reduce(tensor, group=group, async_op=True)
return work2, tensor
self._test_work_wait(tensor, comm_fn=comm_fn)
class ReduceOpTest(TestCase):
def test_op_isinstance_of_reduceop(self):
for reduce_op in (
c10d.ReduceOp.SUM, c10d.ReduceOp.AVG, c10d.ReduceOp.PRODUCT, c10d.ReduceOp.MIN, c10d.ReduceOp.MAX,
c10d.ReduceOp.BAND, c10d.ReduceOp.BOR, c10d.ReduceOp.BXOR,
):
self.assertTrue(isinstance(reduce_op, c10d.ReduceOp))
for scale in ([torch.tensor(1.0)], 2.0):
self.assertTrue(isinstance(dist._make_nccl_premul_sum(scale), c10d.ReduceOp))
if __name__ == "__main__":
assert (
not torch.cuda._initialized
), "test_distributed must not have initialized CUDA context on main process"
run_tests()
|