File: test_c10d_spawn.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (252 lines) | stat: -rw-r--r-- 9,427 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Owner(s): ["oncall: distributed"]

import os
import sys
import tempfile

import torch
import torch.distributed as c10d
import torch.multiprocessing as mp
from torch.testing._internal.common_distributed import \
    MultiProcessTestCase
from torch.testing._internal.common_utils import load_tests,\
    NO_MULTIPROCESSING_SPAWN

# Torch distributed.nn is not available in windows
# check #42095, it errors on import.
_torch_dist_nn_available = True
try:
    import torch.distributed.nn
except ImportError:
    _torch_dist_nn_available = False

# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests

if not c10d.is_available():
    print('c10d not available, skipping tests', file=sys.stderr)
    sys.exit(0)

if NO_MULTIPROCESSING_SPAWN:
    print('spawn not available, skipping tests', file=sys.stderr)
    sys.exit(0)


class AbstractProcessGroupShareTensorTest(object):
    world_size = 2

    def _test_multiprocess(self, f, shared_tensors, init_pg, n_output):
        ws = self.world_size
        # file store will delete the test file on destruction
        file = tempfile.NamedTemporaryFile(delete=False)
        ctx = mp.get_context('spawn')
        c2p = ctx.Queue(2)
        p2c = ctx.Queue(2)
        ps = []
        for i in range(ws):
            p = ctx.Process(
                target=f,
                args=(i, file.name, shared_tensors, ws, init_pg, c2p, p2c))

            p.start()
            ps.append(p)

        for _ in range(ws * n_output):
            pid, expected, result = c2p.get()
            self.assertEqual(
                expected,
                result,
                msg=(
                    "Expect rank {} to receive tensor {} but got {}."
                ).format(pid, expected, result)
            )

        for _ in range(ws):
            p2c.put(0)

        for p in ps:
            p.join(2)

    # Why classmethod? multiprocessing cannot pickle TestCase subclass when in
    # spawn mode. See https://bugs.python.org/issue33884.
    @classmethod
    def _test_broadcast_process(
            cls, rank, filename, shared_tensors, world_size, init_pg, c2p, p2c):
        pg = init_pg(rank, filename, world_size)
        xs = [shared_tensors[rank]]
        pg.broadcast(xs).wait()
        c2p.put((rank, torch.zeros(2, 2), xs[0].to("cpu")))
        p2c.get()

    @classmethod
    def _test_allreduce_process(
            cls, rank, filename, shared_tensors, world_size, init_pg, c2p, p2c):
        pg = init_pg(rank, filename, world_size)
        xs = [shared_tensors[rank]]
        pg.allreduce(xs, op=c10d.ReduceOp.SUM).wait()
        c2p.put((rank, torch.ones(2, 2) * 2, xs[0].to("cpu")))
        p2c.get()

    @classmethod
    def _test_allgather_process(
            cls, rank, filename, shared_tensors, world_size, init_pg, c2p, p2c):
        pg = init_pg(rank, filename, world_size)
        xs = [shared_tensors[rank]]
        ys = [[torch.zeros_like(xs[0]) for i in range(world_size)]]
        pg.allgather(ys, xs).wait()
        for i in range(world_size):
            c2p.put((rank, torch.ones(2, 2) * i, ys[0][i].to("cpu")))

        p2c.get()


class TestDistributedNNFunctions(MultiProcessTestCase):
    def setUp(self):
        super(TestDistributedNNFunctions, self).setUp()
        self._spawn_processes()

    def tearDown(self):
        super(TestDistributedNNFunctions, self).tearDown()
        try:
            os.remove(self.file_name)
        except OSError:
            pass

    @property
    def op_timeout_sec(self):
        return 1

    @property
    def world_size(self):
        return 2

    def _test_broadcast(self, backend):
        store = c10d.FileStore(self.file_name, self.world_size)
        # This is required because these functions calls directly to the .dist and needs
        # the world to be initialized
        c10d.init_process_group(
            store=store, rank=self.rank, world_size=self.world_size, backend=backend
        )
        device = torch.device(f"cuda:{self.rank}")
        x = torch.ones(5, 5, device=device) + self.rank
        x.requires_grad = True
        y = torch.distributed.nn.broadcast(x, 1)
        self.assertEqual(y, 1 + torch.ones(5, 5))
        z = y.sin().sum()
        z.backward()
        # We can't check the gradient of communications numerically so we have to do some calculations
        if self.rank == 1:
            self.assertEqual(x.grad, 2 * torch.cos(x))
        elif self.rank == 0:
            self.assertEqual(x.grad, torch.zeros(5, 5, device=device))

    def _test_reduce(self, backend):
        store = c10d.FileStore(self.file_name, self.world_size)
        # This is required because these functions calls directly to the .dist and needs
        # the world to be initialized
        c10d.init_process_group(
            store=store, rank=self.rank, world_size=self.world_size, backend=backend
        )
        device = torch.device(f"cuda:{self.rank}")
        x = torch.ones(5, 5, device=device) + self.rank
        x.requires_grad = True
        y = torch.distributed.nn.reduce(x, 1, op=c10d.ReduceOp.SUM)

        if self.rank == 1:
            self.assertEqual(y, 3 * torch.ones(5, 5, device=device))

        z = y.sin().sum()
        z.backward()
        # Gradients are broadcasted to both ranks
        x_g = (3 * torch.ones(5, 5, device=device)).cos()
        self.assertEqual(x.grad, x_g)

    def _test_allreduce(self, backend):
        store = c10d.FileStore(self.file_name, self.world_size)
        # This is required because these functions calls directly to the .dist and needs
        # the world to be initialized
        c10d.init_process_group(
            store=store, rank=self.rank, world_size=self.world_size, backend=backend
        )
        device = torch.device(f"cuda:{self.rank}")
        x = torch.ones(5, 5, device=device) + self.rank
        x.requires_grad = True
        y = torch.distributed.nn.all_reduce(x, op=c10d.ReduceOp.SUM)

        self.assertEqual(y, 3 * torch.ones(5, 5, device=device))

        z = y.sin().sum()
        z.backward()
        x_g = 2 * (3 * torch.ones(5, 5, device=device)).cos()
        self.assertEqual(x.grad, x_g)

    def _test_all_gather(self, backend):
        store = c10d.FileStore(self.file_name, self.world_size)
        # This is required because these functions calls directly to the .dist and needs
        # the world to be initialized
        c10d.init_process_group(
            store=store, rank=self.rank, world_size=self.world_size, backend=backend
        )
        device = torch.device(f"cuda:{self.rank}")
        x = torch.ones(5, 5, device=device) + self.rank
        x.requires_grad = True
        tensors = torch.distributed.nn.all_gather(x)
        for i, t in enumerate(tensors):
            self.assertEqual(t, torch.ones(5, 5, device=device) + i)
        y = torch.sum(torch.stack(tensors), axis=0)
        z = y.sin().sum()
        z.backward()

        x_s = 2 * (3 * torch.ones(5, 5, device=device)).cos()
        self.assertEqual(x.grad, x_s)

    def _test_all_to_all(self, backend):
        store = c10d.FileStore(self.file_name, self.world_size)
        # This is required because these functions calls directly to the .dist and needs
        # the world to be initialized
        c10d.init_process_group(
            store=store, rank=self.rank, world_size=self.world_size, backend=backend
        )
        device = torch.device(f"cuda:{self.rank}")
        x0 = torch.ones(5, 5, device=device) + 2 * self.rank
        x1 = torch.ones(5, 5, device=device) + 2 * self.rank
        x0.requires_grad = True
        x1.requires_grad = True
        y0 = torch.empty_like(x0)
        y1 = torch.empty_like(x1)
        tensors = torch.distributed.nn.all_to_all([y0, y1], [x0, x1])
        for i, t in enumerate(tensors):
            self.assertEqual(t, torch.ones(5, 5, device=device) + 2 * i)
        y = torch.sum(torch.stack(tensors), axis=0)
        z = y.sin().sum()
        z.backward()
        x_s = (4 * torch.ones(5, 5, device=device)).cos()
        self.assertEqual(x0.grad, x_s)
        self.assertEqual(x1.grad, x_s)

    def _test_all_to_all_single(self, backend):
        store = c10d.FileStore(self.file_name, self.world_size)
        # This is required because these functions calls directly to the .dist and needs
        # the world to be initialized
        c10d.init_process_group(
            store=store, rank=self.rank, world_size=self.world_size, backend=backend
        )
        device = torch.device(f"cuda:{self.rank}")
        row = self.world_size * (self.rank + 1) * (self.world_size + 1) / 2
        x = torch.ones(int(row), 5, device=device) * (self.rank + 1)
        x.requires_grad = True
        y = torch.empty_like(x)
        split_sizes = [(i + 1) * (self.rank + 1) for i in range(self.world_size)]
        y = torch.distributed.nn.all_to_all_single(
            y, x, output_split_sizes=split_sizes, input_split_sizes=split_sizes
        )
        expected = []
        for idx, tensor in enumerate(torch.split(x, split_sizes)):
            expected.append(torch.full_like(tensor, (idx + 1)))
        expected = torch.cat(expected)
        self.assertEqual(y, expected)
        z = y.sin().sum()
        z.backward()
        x_s = ((self.rank + 1) * torch.ones(int(row), 5, device=device)).cos()
        self.assertEqual(x.grad, x_s)