File: test_c10d_spawn_gloo.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (278 lines) | stat: -rw-r--r-- 11,057 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# Owner(s): ["oncall: distributed"]

import copy
import os
import sys
import tempfile

import test_c10d_spawn
import torch
import torch.distributed as c10d
import torch.nn as nn
from test_c10d_spawn import _torch_dist_nn_available, TestDistributedNNFunctions
from torch.testing._internal.common_cuda import TEST_CUDA, TEST_MULTIGPU
from torch.testing._internal.common_distributed import requires_gloo, \
    create_device, skip_if_lt_x_gpu
from torch.testing._internal.common_utils import TestCase, run_tests, sandcastle_skip_if, TEST_WITH_DEV_DBG_ASAN

# Fails on Python-3.9, see https://github.com/pytorch/pytorch/issues/51619
if sys.version_info < (3, 9):
    class ProcessGroupShareTensorTest(test_c10d_spawn.AbstractProcessGroupShareTensorTest, TestCase):

        @classmethod
        def opts(cls, threads=2):
            opts = c10d.ProcessGroupGloo._Options()
            opts._timeout = 5.0
            opts._devices = [create_device(interface='lo')]
            opts._threads = threads
            return opts

        @classmethod
        def _init_pg_gloo(cls, rank, filename, world_size):
            store = c10d.FileStore(filename, world_size)
            return c10d.ProcessGroupGloo(
                store, rank, world_size, ProcessGroupShareTensorTest.opts())

        @sandcastle_skip_if(not TEST_MULTIGPU, "At least 2 CUDA GPUS needed")
        def test_shared_broadcast_gloo(self):
            self._test_multiprocess(
                ProcessGroupShareTensorTest._test_broadcast_process,
                [torch.ones(2, 2).to(i) * i for i in range(self.world_size)],
                ProcessGroupShareTensorTest._init_pg_gloo,
                1)

        @sandcastle_skip_if(not TEST_MULTIGPU, "At least 2 CUDA GPUS needed")
        def test_shared_allreduce_gloo(self):
            self._test_multiprocess(
                ProcessGroupShareTensorTest._test_allreduce_process,
                [torch.ones(2, 2).to(i) for i in range(self.world_size)],
                ProcessGroupShareTensorTest._init_pg_gloo,
                1)

        @sandcastle_skip_if(not TEST_MULTIGPU, "At least 2 CUDA GPUS needed")
        def test_shared_allgather_gloo(self):
            self._test_multiprocess(
                ProcessGroupShareTensorTest._test_allgather_process,
                [torch.ones(2, 2).to(i) * i for i in range(self.world_size)],
                ProcessGroupShareTensorTest._init_pg_gloo,
                self.world_size)

        @classmethod
        def _test_allgather_chunk_process(
                cls, rank, filename, shared_tensor, world_size, init_pg, c2p, p2c):
            pg = init_pg(rank, filename, world_size)
            chunks = torch.chunk(shared_tensor, world_size, dim=0)
            x = chunks[rank]
            ys = [torch.zeros_like(x) for _ in range(world_size)]
            pg.allgather(ys, x).wait()
            c2p.put((rank, chunks[0].to("cpu"), ys[0].to("cpu")))
            c2p.put((rank, chunks[1].to("cpu"), ys[1].to("cpu")))
            p2c.get()

        @sandcastle_skip_if(not TEST_MULTIGPU, "At least 2 CUDA GPUS needed")
        def test_shared_allgather_chunk_gloo(self):
            self._test_multiprocess(
                ProcessGroupShareTensorTest._test_allgather_chunk_process,
                torch.tensor(range(4)).reshape(2, 2),
                ProcessGroupShareTensorTest._init_pg_gloo,
                self.world_size)


class DistributedDataParallelSingleProcessTest(TestCase):
    def setUp(self):
        self.rank = 0
        self.world_size = 1
        self.file = tempfile.NamedTemporaryFile(delete=False)  # noqa: P201

    def tearDown(self):
        try:
            os.remove(self.file.name)
        except OSError:
            pass

    def _test_base(self, net, inp, check_allclose=True):
        store = c10d.FileStore(self.file.name, self.world_size)
        process_group = c10d.ProcessGroupGloo(store, self.rank, self.world_size)
        if inp[0].is_cuda:
            device_ids = [torch.cuda.current_device()]
        else:
            device_ids = None

        ddp = nn.parallel.DistributedDataParallel(
            copy.deepcopy(net),
            device_ids=device_ids,
            process_group=process_group
        )

        net_opt = torch.optim.Adam(net.parameters(), lr=0.001)
        ddp_opt = torch.optim.Adam(ddp.parameters(), lr=0.001)

        for i, j in zip(ddp.parameters(), net.parameters()):
            self.assertTrue(i.allclose(j))

        for _ in range(10):
            net_out = net(*inp)
            ddp_out = ddp(*inp)

            net_out.sum().backward()
            ddp_out.sum().backward()

            net_opt.step()
            ddp_opt.step()

        if check_allclose:
            for i, j in zip(ddp.parameters(), net.parameters()):
                self.assertTrue(i.allclose(j))

    @requires_gloo()
    def test_cpu(self):
        self._test_base(nn.Linear(2, 2), [torch.randn(30, 2)])

    @requires_gloo()
    @sandcastle_skip_if(not TEST_CUDA, "At least 1 CUDA GPUS needed")
    def test_cuda(self):
        self._test_base(nn.Linear(2, 2).to(0), [torch.randn(30, 2).to(0)])

    @requires_gloo()
    @sandcastle_skip_if(not TEST_CUDA, "At least 1 CUDA GPUS needed")
    def test_rnn(self):
        # This test is inspired by the bug reported in
        # https://github.com/pytorch/pytorch/issues/36268
        BATCH_SIZE = 12  # Divisible by 2, 3, 4
        INPUT_DIM = 256
        OUTPUT_DIM = 256
        HIDDEN_DIM = 256
        N_LAYERS = 3
        SEQ_LEN = 100

        class Net(nn.Module):
            def __init__(self, input_dim, hidden_dim, output_dim, hidden_layers):
                super(Net, self).__init__()
                self.input_dim = input_dim
                self.hidden_dim = hidden_dim
                self.output_dim = output_dim
                self.hidden_layers = hidden_layers

                self.lstm = nn.LSTM(input_dim, hidden_dim, hidden_layers, batch_first=True)
                self.h2o = nn.Linear(hidden_dim, output_dim)

            def forward(self, x, y):
                self.lstm.flatten_parameters()
                h_t, _ = self.lstm(x)
                output = self.h2o(h_t)
                loss = nn.functional.mse_loss(output, y)
                return loss

        net = Net(INPUT_DIM, HIDDEN_DIM, OUTPUT_DIM, N_LAYERS).to(0)
        inp = [
            torch.randn((BATCH_SIZE, SEQ_LEN, INPUT_DIM)).to(0),
            torch.rand((BATCH_SIZE, SEQ_LEN, OUTPUT_DIM)).to(0)
        ]

        # Not checking result allclose as the parameter inconsistency exist
        # prior to this change. See #37079
        self._test_base(net, inp, check_allclose=False)


# Skip dev-asan as torch + multiprocessing spawn have known issues
if not TEST_WITH_DEV_DBG_ASAN:
    class TestDistributedNNFunctionsGloo(TestDistributedNNFunctions):
        # Test Common Ops First.
        @requires_gloo()
        @skip_if_lt_x_gpu(2)
        @sandcastle_skip_if(not _torch_dist_nn_available, "torch.distributed.nn is not available")
        def test_broadcast(self):
            self._test_broadcast("gloo")

        @requires_gloo()
        @skip_if_lt_x_gpu(2)
        @sandcastle_skip_if(not _torch_dist_nn_available, "torch.distributed.nn is not available")
        def test_reduce(self):
            self._test_reduce("gloo")

        @requires_gloo()
        @skip_if_lt_x_gpu(2)
        @sandcastle_skip_if(not _torch_dist_nn_available, "torch.distributed.nn is not available")
        def test_allreduce(self):
            self._test_allreduce("gloo")

        @requires_gloo()
        @skip_if_lt_x_gpu(2)
        @sandcastle_skip_if(not _torch_dist_nn_available, "torch.distributed.nn is not available")
        def test_all_gather(self):
            self._test_all_gather("gloo")

        @requires_gloo()
        @skip_if_lt_x_gpu(2)
        @sandcastle_skip_if(not _torch_dist_nn_available, "torch.distributed.nn is not available")
        def test_all_to_all(self):
            self._test_all_to_all("gloo")

        @requires_gloo()
        @skip_if_lt_x_gpu(2)
        @sandcastle_skip_if(not _torch_dist_nn_available, "torch.distributed.nn is not available")
        def test_all_to_all_single(self):
            self._test_all_to_all_single("gloo")

        # Test Ops only supported in GLOO.
        @requires_gloo()
        @skip_if_lt_x_gpu(2)
        @sandcastle_skip_if(not _torch_dist_nn_available, "torch.distributed.nn is not available")
        def test_gather(self):
            store = c10d.FileStore(self.file_name, self.world_size)
            # This is required because these functions calls directly to the .dist and needs
            # the world to be initialized
            c10d.init_process_group(store=store, rank=self.rank, world_size=self.world_size, backend='gloo')
            device = torch.device(f"cuda:{self.rank}")
            x = torch.ones(5, 5, device=device) + self.rank
            x.requires_grad = True
            tensors = torch.distributed.nn.gather(x, 1)
            if self.rank == 1:
                for i, t in enumerate(tensors):
                    self.assertEqual(t, torch.ones(5, 5, device=device) + i)
            elif self.rank == 0:
                for i, t in enumerate(tensors):
                    zeros = torch.zeros(5, 5, device=device)
                    self.assertEqual(t, zeros)
            y = torch.sum(torch.stack(tensors), axis=0)
            z = y.sin().sum()
            z.backward()

            # Test gradient
            x_s = 3 * torch.ones(5, 5, device=device)
            self.assertEqual(x.grad, x_s.cos())

        @requires_gloo()
        @skip_if_lt_x_gpu(2)
        @sandcastle_skip_if(not _torch_dist_nn_available, "torch.distributed.nn is not available")
        def test_scatter(self):
            store = c10d.FileStore(self.file_name, self.world_size)
            # This is required because these functions calls directly to the .dist and needs
            # the world to be initialized
            c10d.init_process_group(store=store, rank=self.rank, world_size=self.world_size, backend='gloo')
            device = torch.device(f"cuda:{self.rank}")
            x0 = torch.ones(5, 5, device=device)
            x1 = torch.ones(5, 5, device=device) + 1
            x0.requires_grad = True
            x1.requires_grad = True

            y = torch.distributed.nn.scatter([x0, x1], 1)
            if self.rank == 1:
                self.assertEqual(y, 1 + torch.ones(5, 5, device=device))
            elif self.rank == 0:
                self.assertEqual(y, torch.ones(5, 5, device=device))
            z = y.sin().sum()
            z.backward()

            # Test gradient
            if self.rank == 1:
                x0_s = torch.ones(5, 5, device=device).cos()
                x1_s = (2 * torch.ones(5, 5, device=device)).cos()
                self.assertEqual(x0.grad, x0_s)
                self.assertEqual(x1.grad, x1_s)
            if self.rank == 0:
                self.assertEqual(x0.grad, torch.zeros(5, 5, device=device))


if __name__ == '__main__':
    run_tests()