1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
# Owner(s): ["oncall: distributed"]
import sys
import torch
import torch.cuda.nccl as nccl
import torch.cuda
import torch.distributed as c10d
from torch.testing._internal.common_utils import (TestCase, run_tests,
IS_WINDOWS, load_tests,
TEST_WITH_ROCM,
sandcastle_skip_if)
from torch.testing._internal.common_cuda import CUDA11OrLater, TEST_CUDA, TEST_MULTIGPU
from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes
import re
HIP_VERSION = 0.0 if torch.version.hip is None else float(re.search(r"^\d+\.\d+", torch.version.hip)[0])
# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
nGPUs = torch.cuda.device_count()
if not TEST_CUDA:
print('CUDA not available, skipping tests', file=sys.stderr)
TestCase = object # noqa: F811
datatypes = [torch.float]
if (TEST_CUDA and CUDA11OrLater and c10d.is_nccl_available() and nccl.version() >= (2, 10)) or TEST_WITH_ROCM:
datatypes.append(torch.bfloat16)
class TestNCCL(TestCase):
@sandcastle_skip_if(IS_WINDOWS, "NCCL doesn't support Windows")
def test_unique_id(self, device):
uid = nccl.unique_id()
self.assertIsInstance(uid, bytes)
self.assertGreater(len(uid), 1)
@sandcastle_skip_if(TEST_WITH_ROCM and HIP_VERSION < 3.5, 'Skip NCCL tests for ROCm')
@sandcastle_skip_if(IS_WINDOWS, "NCCL doesn't support Windows")
@sandcastle_skip_if(not TEST_MULTIGPU, "only one GPU detected")
@dtypes(*datatypes)
def test_broadcast(self, device, dtype):
expected = torch.zeros(128).uniform_().to(dtype=dtype)
tensors = [expected.cuda()]
for device in range(1, torch.cuda.device_count()):
tensors.append(torch.zeros(128, dtype=dtype, device=device))
nccl.broadcast(tensors)
for i in range(torch.cuda.device_count()):
self.assertEqual(tensors[i], expected)
# Test with tuple
tensors = [expected.cuda()]
for device in range(1, torch.cuda.device_count()):
tensors.append(torch.zeros(128, dtype=dtype, device=device))
nccl.broadcast(tuple(tensors))
for i in range(torch.cuda.device_count()):
self.assertEqual(tensors[i], expected)
@sandcastle_skip_if(TEST_WITH_ROCM and HIP_VERSION < 3.5, 'Skip NCCL tests for ROCm')
@sandcastle_skip_if(IS_WINDOWS, "NCCL doesn't support Windows")
@sandcastle_skip_if(not TEST_MULTIGPU, "only one GPU detected")
@dtypes(*datatypes)
def test_reduce(self, device, dtype):
cpu_tensors = [torch.zeros(128).uniform_().to(dtype=dtype) for i in range(nGPUs)]
expected = torch.zeros(128, dtype=dtype)
for t in cpu_tensors:
expected.add_(t)
tensors = [cpu_tensors[i].cuda(i) for i in range(nGPUs)]
nccl.reduce(tensors)
self.assertEqual(tensors[0], expected)
# Test with tuple
tensors = [cpu_tensors[i].cuda(i) for i in range(nGPUs)]
nccl.reduce(tuple(tensors))
self.assertEqual(tensors[0], expected)
@sandcastle_skip_if(IS_WINDOWS, "NCCL doesn't support Windows")
@sandcastle_skip_if(not TEST_MULTIGPU, "only one GPU detected")
@sandcastle_skip_if(TEST_WITH_ROCM and HIP_VERSION < 3.5 and dtype == torch.bfloat16, "Skip bfloat16 test for ROCm < 3.5")
@dtypes(*datatypes)
def test_all_reduce(self, device, dtype):
cpu_tensors = [torch.zeros(128).uniform_().to(dtype=dtype) for i in range(nGPUs)]
expected = torch.zeros(128, dtype=dtype)
for t in cpu_tensors:
expected.add_(t)
tensors = [cpu_tensors[i].cuda(i) for i in range(nGPUs)]
nccl.all_reduce(tensors)
for tensor in tensors:
self.assertEqual(tensor, expected)
# Test with tuple.
tensors = tuple(cpu_tensors[i].cuda(i) for i in range(nGPUs))
nccl.all_reduce(tensors)
for tensor in tensors:
self.assertEqual(tensor, expected)
# Test with set.
tensors = {cpu_tensors[i].cuda(i) for i in range(nGPUs)}
nccl.all_reduce(tensors)
for tensor in tensors:
self.assertEqual(tensor, expected)
@sandcastle_skip_if(TEST_WITH_ROCM and HIP_VERSION < 3.5, 'Skip NCCL tests for ROCm')
@sandcastle_skip_if(IS_WINDOWS, "NCCL doesn't support Windows")
def test_collective_errors(self, device):
t = torch.rand(10).cuda(0)
with self.assertRaisesRegex(TypeError, "Inputs should be a collection of tensors"):
nccl.all_reduce(t)
with self.assertRaisesRegex(TypeError, "Inputs should be a collection of tensors"):
nccl.reduce(t)
with self.assertRaisesRegex(TypeError, "Inputs should be a collection of tensors"):
nccl.broadcast(t)
with self.assertRaisesRegex(TypeError, "Inputs should be a collection of tensors"):
nccl.all_gather(t, t)
with self.assertRaisesRegex(TypeError, "Inputs should be a collection of tensors"):
nccl.reduce_scatter(t, t)
@sandcastle_skip_if(TEST_WITH_ROCM and HIP_VERSION < 3.5, 'Skip NCCL tests for ROCm')
@sandcastle_skip_if(IS_WINDOWS, "NCCL doesn't support Windows")
@sandcastle_skip_if(not TEST_MULTIGPU, "only one GPU detected")
@dtypes(*datatypes)
def test_all_gather(self, device, dtype):
cpu_inputs = [torch.zeros(128).uniform_().to(dtype=dtype) for i in range(nGPUs)]
expected = torch.cat(cpu_inputs, 0)
inputs = [cpu_inputs[i].cuda(i) for i in range(nGPUs)]
outputs = [torch.zeros(128 * nGPUs, device=i, dtype=dtype)
for i in range(nGPUs)]
nccl.all_gather(inputs, outputs)
for tensor in outputs:
self.assertEqual(tensor, expected)
# Test with tuple.
inputs = [cpu_inputs[i].cuda(i) for i in range(nGPUs)]
outputs = [torch.zeros(128 * nGPUs, device=i, dtype=dtype)
for i in range(nGPUs)]
nccl.all_gather(tuple(inputs), tuple(outputs))
for tensor in outputs:
self.assertEqual(tensor, expected)
@sandcastle_skip_if(TEST_WITH_ROCM and HIP_VERSION < 3.5, 'Skip NCCL tests for ROCm')
@sandcastle_skip_if(IS_WINDOWS, "NCCL doesn't support Windows")
@sandcastle_skip_if(not TEST_MULTIGPU, "only one GPU detected")
@dtypes(*datatypes)
def test_reduce_scatter(self, device, dtype):
in_size = 32 * nGPUs
out_size = 32
cpu_inputs = [torch.zeros(in_size).uniform_().to(dtype=dtype) for i in range(nGPUs)]
expected = torch.zeros(in_size, dtype=dtype)
for t in cpu_inputs:
expected.add_(t)
expected = expected.view(nGPUs, 32)
inputs = [cpu_inputs[i].cuda(i) for i in range(nGPUs)]
outputs = [torch.zeros(out_size, device=i, dtype=dtype)
for i in range(nGPUs)]
nccl.reduce_scatter(inputs, outputs)
for i in range(nGPUs):
self.assertEqual(outputs[i], expected[i])
# Test with tuple
inputs = [cpu_inputs[i].cuda(i) for i in range(nGPUs)]
outputs = [torch.zeros(out_size, device=i, dtype=dtype)
for i in range(nGPUs)]
nccl.reduce_scatter(tuple(inputs), tuple(outputs))
for i in range(nGPUs):
self.assertEqual(outputs[i], expected[i])
instantiate_device_type_tests(TestNCCL, globals(), only_for='cuda')
if __name__ == '__main__':
run_tests()
|