1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
|
# Owner(s): ["oncall: distributed"]
import os
import sys
from datetime import timedelta
import torch
import torch.distributed as c10d
if not c10d.is_available():
print("c10d not available, skipping tests", file=sys.stderr)
sys.exit(0)
from test_c10d_common import LOOPBACK
from torch.testing._internal.common_distributed import (
MultiProcessTestCase,
requires_nccl,
requires_gloo,
skip_if_lt_x_gpu,
with_dist_debug_levels,
create_device,
)
from torch.testing._internal.common_utils import (
run_tests,
TEST_WITH_DEV_DBG_ASAN,
)
class AbstractProcessGroupWrapperTest(MultiProcessTestCase):
def setUp(self):
super(AbstractProcessGroupWrapperTest, self).setUp()
self._spawn_processes()
def _validate_error(self, exception, op_type, rank, tensor):
err = str(exception)
self.assertTrue(
op_type in err, f"Got {err} but expected {op_type} to be in error."
)
# User doesn't call barrier with tensor.
if op_type != "BARRIER":
self.assertTrue(
f"{list(tensor.shape)}" in err,
f"Did not find shapes {list(tensor.shape)} in error {err}",
)
# For CUDA, only assert on device type, not index
if "cuda" in str(tensor.device):
self.assertTrue(
"cuda" in err, f"Did not find cuda device in error {err}"
)
else:
self.assertTrue(
str(tensor.device) in err,
f"Did not find tensor device {str(tensor.device)} in error {err}",
)
# C++ and python type strings are not exactly the same.
if "float" in str(tensor.dtype):
self.assertTrue("Float" in err, "Expected Float type")
elif "int" in str(tensor.dtype):
self.assertTrue("Long" in err, "Expected Long type")
else:
self.fail(f"Unexpected dtype {str(tensor.dtype)} for error {err}")
def _test_collective_hang(self, wrapper_pg, use_cuda=False):
# All ranks besides 1 call allreduce and wrapper_pg should detect a hang
# and report an issue with rank 1.
faulty_rank = 1
if self.rank != faulty_rank:
tensor = torch.randn(20, 10)
if use_cuda:
tensor = tensor.to(self.rank)
if self.rank == 0:
# Rank 0 reports faulty ranks
err = f"Ranks {faulty_rank} failed to pass monitoredBarrier"
else:
err = "Please check rank 0 logs for faulty rank"
# Gloo can sometimes throw the following error if a rank exits early
# before rank 0 calls into the allreduce.
err += "|Connection closed by peer|Connection reset by peer"
with self.assertRaisesRegex(RuntimeError, err):
wrapper_pg.allreduce([tensor])
def _test_collectives_op_mismatch(self, wrapper_pg, use_cuda=False):
tensor = torch.randn(20, 10)
if use_cuda:
tensor = tensor.to(self.rank)
works = []
# Run a few successful collectives
for _ in range(10):
work = wrapper_pg.allreduce([tensor])
works.append(work)
for w in works:
w.wait()
# Simulate mismatch: allreduce vs reduce.
# Error including info about inconsistent collective, rank, tensor
# shape, device, and dtype should be raised.
with self.assertRaisesRegex(RuntimeError, ".*") as cm:
if self.rank == 0:
wrapper_pg.allreduce([tensor])
else:
wrapper_pg.reduce([tensor])
self._validate_error(
exception=cm.exception,
op_type="ALLREDUCE" if self.rank == 0 else "REDUCE",
rank=self.rank,
tensor=tensor,
)
with self.assertRaisesRegex(RuntimeError, ".*") as cm:
if self.rank == 0:
wrapper_pg.reduce([tensor])
else:
wrapper_pg.barrier()
self._validate_error(
exception=cm.exception,
op_type="REDUCE" if self.rank == 0 else "BARRIER",
rank=self.rank,
tensor=tensor,
)
with self.assertRaisesRegex(RuntimeError, ".*") as cm:
scatter_result = [torch.ones(4) * i for i in range(self.world_size)]
scattered_tensor = torch.empty(4)
if self.rank == 0:
wrapper_pg.scatter(scattered_tensor, scatter_result, 0)
else:
wrapper_pg.reduce_scatter(scattered_tensor, scatter_result)
self._validate_error(
exception=cm.exception,
op_type="SCATTER" if self.rank == 0 else "REDUCE_SCATTER",
rank=self.rank,
tensor=scattered_tensor,
)
with self.assertRaisesRegex(RuntimeError, ".*") as cm:
if self.rank == 0:
wrapper_pg.broadcast(tensor, 0)
else:
output_tensors = [
torch.zeros_like(tensor) for _ in range(self.world_size)
]
wrapper_pg.allgather([output_tensors], [tensor])
self._validate_error(
exception=cm.exception,
op_type="BROADCAST" if self.rank == 0 else "ALLGATHER",
rank=self.rank,
tensor=tensor,
)
def _test_collective_shape_mismatch(self, wrapper_pg, use_cuda=False):
wrapper_pg.barrier()
dim = 2 if self.rank == 0 else 10
tensor = torch.randn(20, dim)
if use_cuda:
tensor = tensor.to(self.rank)
with self.assertRaisesRegex(RuntimeError, ".*") as cm:
wrapper_pg.allreduce([tensor])
self._validate_error(
exception=cm.exception,
op_type="ALLREDUCE",
rank=self.rank,
tensor=tensor,
)
# Check errors are raised when dimensionality of shapes is different
tensor = torch.randn(20, 10, 2) if self.rank == 0 else torch.randn(20, 10)
if use_cuda:
tensor = tensor.to(self.rank)
with self.assertRaisesRegex(RuntimeError, ".*") as cm:
wrapper_pg.allreduce([tensor])
self._validate_error(
exception=cm.exception,
op_type="ALLREDUCE",
rank=self.rank,
tensor=tensor,
)
# Check shape errors with scatter
input = [
torch.tensor(
[self.rank] if self.rank == 0 else [self.rank, self.rank],
device=self.rank if use_cuda else "cpu",
)
for _ in range(self.world_size)
]
outputs = [
torch.tensor(
[-1] if self.rank == 0 else [-1, -1],
device=self.rank if use_cuda else "cpu",
)
for _ in range(self.world_size)
]
root_rank = 0
opts = c10d.ScatterOptions()
opts.rootRank = root_rank
with self.assertRaisesRegex(RuntimeError, ".*") as cm:
if self.rank == root_rank:
wrapper_pg.scatter([outputs[self.rank]], [input], opts).wait()
else:
wrapper_pg.scatter([outputs[self.rank]], [], opts).wait()
self._validate_error(
exception=cm.exception,
op_type="SCATTER",
rank=self.rank,
tensor=outputs[self.rank],
)
# ASAN is not safe since we are spawning processes.
if not TEST_WITH_DEV_DBG_ASAN:
@requires_gloo()
@requires_nccl()
class ProcessGroupNCCLWrapperTest(AbstractProcessGroupWrapperTest):
def setUp(self):
super(AbstractProcessGroupWrapperTest, self).setUp()
self._spawn_processes()
# NCCL_BLOCKING_WAIT overrides NCCL_ASYNC_ERROR_HANDLING hence tests
# that use NCCL_BLOCKING_WAIT will test it as expected.
os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "1"
@property
def world_size(self) -> int:
return 2
def _create_wrapper_pg(self, with_new_group=False, timeout=10.0):
store = c10d.FileStore(self.file_name, self.world_size)
c10d.init_process_group(
backend="nccl",
rank=self.rank,
world_size=self.world_size,
store=store,
timeout=timedelta(seconds=timeout),
)
if with_new_group:
pg = c10d.new_group(backend="nccl", timeout=timedelta(seconds=timeout))
else:
_pg = c10d.ProcessGroupNCCL(
store, self.rank, self.world_size, timeout=timedelta(seconds=timeout)
)
pg = c10d._create_process_group_wrapper(
_pg,
"unused",
store,
self.rank,
self.world_size,
timeout=timeout,
)
return pg
@requires_nccl()
@skip_if_lt_x_gpu(2)
def test_collective_hang(self):
pg = self._create_wrapper_pg(timeout=2.0)
self._test_collective_hang(pg)
# NOTE: these tests are separated by debug level instead of combined into
# one due to https://github.com/pytorch/pytorch/issues/55967, they can be
# combined after that is resolved.
@requires_nccl()
@skip_if_lt_x_gpu(2)
@with_dist_debug_levels(levels=["DETAIL"])
def test_collectives_op_mismatch_debug_mode(self):
pg = self._create_wrapper_pg(with_new_group=True)
self._test_collectives_op_mismatch(pg, use_cuda=True)
self._test_nccl_only_op_mismatch(pg)
@requires_nccl()
@skip_if_lt_x_gpu(2)
@with_dist_debug_levels(levels=["OFF"])
def test_collectives_op_mismatch(self):
pg = self._create_wrapper_pg(with_new_group=False)
self._test_collectives_op_mismatch(pg, use_cuda=True)
self._test_nccl_only_op_mismatch(pg)
@requires_nccl()
@skip_if_lt_x_gpu(2)
@with_dist_debug_levels(levels=["DETAIL"])
def test_collective_shape_mismatch_debug_mode(self):
pg = self._create_wrapper_pg(with_new_group=True)
self._test_collective_shape_mismatch(pg, use_cuda=True)
self._test_nccl_only_shape_mismatch(pg)
@requires_nccl()
@skip_if_lt_x_gpu(2)
@with_dist_debug_levels(levels=["OFF"])
def test_collective_shape_mismatch(self):
pg = self._create_wrapper_pg(with_new_group=False)
self._test_collective_shape_mismatch(pg, use_cuda=True)
self._test_nccl_only_shape_mismatch(pg)
def _test_nccl_only_op_mismatch(self, wrapper_pg):
device = f"cuda:{self.rank}"
with self.assertRaisesRegex(RuntimeError, ".*") as cm:
output = torch.zeros(4 + self.rank, device=device)
input = torch.ones(4 * self.world_size, device=device)
if self.rank == 0:
wrapper_pg._allgather_base(output, input).wait()
else:
wrapper_pg._reduce_scatter_base(output, input).wait()
self._validate_error(
exception=cm.exception,
op_type="ALLGATHER_BASE" if self.rank == 0 else "REDUCE_SCATTER_BASE",
rank=self.rank,
tensor=input,
)
def _test_nccl_only_shape_mismatch(self, wrapper_pg):
device = f"cuda:{self.rank}"
with self.assertRaisesRegex(RuntimeError, ".*") as cm:
output = torch.zeros(4 + self.rank, device=device)
input = torch.ones(4 * self.world_size, device=device)
wrapper_pg._reduce_scatter_base(output, input).wait()
self._validate_error(
exception=cm.exception,
op_type="REDUCE_SCATTER_BASE",
rank=self.rank,
tensor=input,
)
with self.assertRaisesRegex(RuntimeError, ".*") as cm:
output = torch.zeros(4, device=device)
input = torch.ones((4 + self.rank) * self.world_size, device=device)
wrapper_pg._reduce_scatter_base(output, input).wait()
self._validate_error(
exception=cm.exception,
op_type="REDUCE_SCATTER_BASE",
rank=self.rank,
tensor=input,
)
@requires_gloo()
class ProcessGroupGlooWrapperTest(AbstractProcessGroupWrapperTest):
def setUp(self):
super(ProcessGroupGlooWrapperTest, self).setUp()
def opts(self, threads=2, timeout=10.0):
opts = c10d.ProcessGroupGloo._Options()
opts._timeout = timeout
opts._devices = [create_device(interface=LOOPBACK)]
opts._threads = threads
return opts
def _create_wrapper_pg(self, with_new_group=False, timeout=10.0):
store = c10d.FileStore(self.file_name, self.world_size)
c10d.init_process_group(
backend="gloo", rank=self.rank, world_size=self.world_size, store=store
)
if with_new_group:
pg = c10d.new_group(backend="gloo")
else:
_pg = c10d.ProcessGroupGloo(
store, self.rank, self.world_size, self.opts(timeout=timeout)
)
pg = c10d._create_process_group_wrapper(
_pg,
"unused",
store,
self.rank,
self.world_size,
timeout=timeout,
)
return pg
def test_collective_hang(self):
pg = self._create_wrapper_pg(timeout=2.0)
self._test_collective_hang(pg)
# NOTE: these tests are separated by debug level instead of combined into
# one due to https://github.com/pytorch/pytorch/issues/55967, they can be
# combined after that is resolved.
@with_dist_debug_levels(levels=["DETAIL"])
def test_collectives_op_mismatch_debug_mode(self):
pg = self._create_wrapper_pg(with_new_group=True)
self._test_collectives_op_mismatch(pg)
@with_dist_debug_levels(levels=["OFF"])
def test_collectives_op_mismatch(self):
pg = self._create_wrapper_pg(with_new_group=False)
self._test_collectives_op_mismatch(pg)
@with_dist_debug_levels(levels=["DETAIL"])
def test_collective_shape_mismatch_debug_mode(self):
pg = self._create_wrapper_pg(with_new_group=True)
self._test_collective_shape_mismatch(pg)
@with_dist_debug_levels(levels=["OFF"])
def test_collective_shape_mismatch(self):
pg = self._create_wrapper_pg(with_new_group=False)
self._test_collective_shape_mismatch(pg)
@skip_if_lt_x_gpu(4)
@with_dist_debug_levels(levels=["DETAIL"])
def test_collectives_op_mismatch_cuda_debug_mode(self):
pg = self._create_wrapper_pg(with_new_group=True)
self._test_collectives_op_mismatch(pg, use_cuda=True)
@skip_if_lt_x_gpu(4)
@with_dist_debug_levels(levels=["OFF"])
def test_collectives_op_mismatch_cuda(self):
pg = self._create_wrapper_pg(with_new_group=False)
self._test_collectives_op_mismatch(pg, use_cuda=True)
@skip_if_lt_x_gpu(4)
@with_dist_debug_levels(levels=["DETAIL"])
def test_collective_shape_mismatch_cuda_debug_mode(self):
pg = self._create_wrapper_pg(with_new_group=True)
self._test_collective_shape_mismatch(pg, use_cuda=True)
@skip_if_lt_x_gpu(4)
@with_dist_debug_levels(levels=["OFF"])
def test_collective_shape_mismatch_cuda(self):
pg = self._create_wrapper_pg(with_new_group=False)
self._test_collective_shape_mismatch(pg, use_cuda=True)
if __name__ == "__main__":
assert (
not torch.cuda._initialized
), "test_pg_wrapper must not have initialized CUDA context on main process"
run_tests()
|