File: test_pg_wrapper.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (426 lines) | stat: -rw-r--r-- 16,095 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
# Owner(s): ["oncall: distributed"]

import os
import sys
from datetime import timedelta

import torch
import torch.distributed as c10d

if not c10d.is_available():
    print("c10d not available, skipping tests", file=sys.stderr)
    sys.exit(0)

from test_c10d_common import LOOPBACK
from torch.testing._internal.common_distributed import (
    MultiProcessTestCase,
    requires_nccl,
    requires_gloo,
    skip_if_lt_x_gpu,
    with_dist_debug_levels,
    create_device,
)
from torch.testing._internal.common_utils import (
    run_tests,
    TEST_WITH_DEV_DBG_ASAN,
)


class AbstractProcessGroupWrapperTest(MultiProcessTestCase):
    def setUp(self):
        super(AbstractProcessGroupWrapperTest, self).setUp()
        self._spawn_processes()

    def _validate_error(self, exception, op_type, rank, tensor):
        err = str(exception)
        self.assertTrue(
            op_type in err, f"Got {err} but expected {op_type} to be in error."
        )
        # User doesn't call barrier with tensor.
        if op_type != "BARRIER":
            self.assertTrue(
                f"{list(tensor.shape)}" in err,
                f"Did not find shapes {list(tensor.shape)} in error {err}",
            )
            # For CUDA, only assert on device type, not index
            if "cuda" in str(tensor.device):
                self.assertTrue(
                    "cuda" in err, f"Did not find cuda device in error {err}"
                )
            else:
                self.assertTrue(
                    str(tensor.device) in err,
                    f"Did not find tensor device {str(tensor.device)} in error {err}",
                )
            # C++ and python type strings are not exactly the same.
            if "float" in str(tensor.dtype):
                self.assertTrue("Float" in err, "Expected Float type")
            elif "int" in str(tensor.dtype):
                self.assertTrue("Long" in err, "Expected Long type")
            else:
                self.fail(f"Unexpected dtype {str(tensor.dtype)} for error {err}")

    def _test_collective_hang(self, wrapper_pg, use_cuda=False):
        # All ranks besides 1 call allreduce and wrapper_pg should detect a hang
        # and report an issue with rank 1.
        faulty_rank = 1
        if self.rank != faulty_rank:
            tensor = torch.randn(20, 10)
            if use_cuda:
                tensor = tensor.to(self.rank)

            if self.rank == 0:
                # Rank 0 reports faulty ranks
                err = f"Ranks {faulty_rank} failed to pass monitoredBarrier"
            else:
                err = "Please check rank 0 logs for faulty rank"

            # Gloo can sometimes throw the following error if a rank exits early
            # before rank 0 calls into the allreduce.
            err += "|Connection closed by peer|Connection reset by peer"
            with self.assertRaisesRegex(RuntimeError, err):
                wrapper_pg.allreduce([tensor])

    def _test_collectives_op_mismatch(self, wrapper_pg, use_cuda=False):
        tensor = torch.randn(20, 10)
        if use_cuda:
            tensor = tensor.to(self.rank)
        works = []
        # Run a few successful collectives
        for _ in range(10):
            work = wrapper_pg.allreduce([tensor])
            works.append(work)

        for w in works:
            w.wait()

        # Simulate mismatch: allreduce vs reduce.
        # Error including info about inconsistent collective, rank, tensor
        # shape, device, and dtype should be raised.
        with self.assertRaisesRegex(RuntimeError, ".*") as cm:
            if self.rank == 0:
                wrapper_pg.allreduce([tensor])
            else:
                wrapper_pg.reduce([tensor])
        self._validate_error(
            exception=cm.exception,
            op_type="ALLREDUCE" if self.rank == 0 else "REDUCE",
            rank=self.rank,
            tensor=tensor,
        )

        with self.assertRaisesRegex(RuntimeError, ".*") as cm:
            if self.rank == 0:
                wrapper_pg.reduce([tensor])
            else:
                wrapper_pg.barrier()
        self._validate_error(
            exception=cm.exception,
            op_type="REDUCE" if self.rank == 0 else "BARRIER",
            rank=self.rank,
            tensor=tensor,
        )

        with self.assertRaisesRegex(RuntimeError, ".*") as cm:
            scatter_result = [torch.ones(4) * i for i in range(self.world_size)]
            scattered_tensor = torch.empty(4)
            if self.rank == 0:
                wrapper_pg.scatter(scattered_tensor, scatter_result, 0)
            else:
                wrapper_pg.reduce_scatter(scattered_tensor, scatter_result)
        self._validate_error(
            exception=cm.exception,
            op_type="SCATTER" if self.rank == 0 else "REDUCE_SCATTER",
            rank=self.rank,
            tensor=scattered_tensor,
        )

        with self.assertRaisesRegex(RuntimeError, ".*") as cm:
            if self.rank == 0:
                wrapper_pg.broadcast(tensor, 0)
            else:
                output_tensors = [
                    torch.zeros_like(tensor) for _ in range(self.world_size)
                ]
                wrapper_pg.allgather([output_tensors], [tensor])
        self._validate_error(
            exception=cm.exception,
            op_type="BROADCAST" if self.rank == 0 else "ALLGATHER",
            rank=self.rank,
            tensor=tensor,
        )

    def _test_collective_shape_mismatch(self, wrapper_pg, use_cuda=False):
        wrapper_pg.barrier()
        dim = 2 if self.rank == 0 else 10
        tensor = torch.randn(20, dim)
        if use_cuda:
            tensor = tensor.to(self.rank)
        with self.assertRaisesRegex(RuntimeError, ".*") as cm:
            wrapper_pg.allreduce([tensor])
        self._validate_error(
            exception=cm.exception,
            op_type="ALLREDUCE",
            rank=self.rank,
            tensor=tensor,
        )

        # Check errors are raised when dimensionality of shapes is different
        tensor = torch.randn(20, 10, 2) if self.rank == 0 else torch.randn(20, 10)
        if use_cuda:
            tensor = tensor.to(self.rank)
        with self.assertRaisesRegex(RuntimeError, ".*") as cm:
            wrapper_pg.allreduce([tensor])
        self._validate_error(
            exception=cm.exception,
            op_type="ALLREDUCE",
            rank=self.rank,
            tensor=tensor,
        )

        # Check shape errors with scatter
        input = [
            torch.tensor(
                [self.rank] if self.rank == 0 else [self.rank, self.rank],
                device=self.rank if use_cuda else "cpu",
            )
            for _ in range(self.world_size)
        ]
        outputs = [
            torch.tensor(
                [-1] if self.rank == 0 else [-1, -1],
                device=self.rank if use_cuda else "cpu",
            )
            for _ in range(self.world_size)
        ]
        root_rank = 0
        opts = c10d.ScatterOptions()
        opts.rootRank = root_rank
        with self.assertRaisesRegex(RuntimeError, ".*") as cm:
            if self.rank == root_rank:
                wrapper_pg.scatter([outputs[self.rank]], [input], opts).wait()
            else:
                wrapper_pg.scatter([outputs[self.rank]], [], opts).wait()
        self._validate_error(
            exception=cm.exception,
            op_type="SCATTER",
            rank=self.rank,
            tensor=outputs[self.rank],
        )


# ASAN is not safe since we are spawning processes.
if not TEST_WITH_DEV_DBG_ASAN:
    @requires_gloo()
    @requires_nccl()
    class ProcessGroupNCCLWrapperTest(AbstractProcessGroupWrapperTest):
        def setUp(self):
            super(AbstractProcessGroupWrapperTest, self).setUp()
            self._spawn_processes()
            # NCCL_BLOCKING_WAIT overrides NCCL_ASYNC_ERROR_HANDLING hence tests
            # that use NCCL_BLOCKING_WAIT will test it as expected.
            os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "1"

        @property
        def world_size(self) -> int:
            return 2

        def _create_wrapper_pg(self, with_new_group=False, timeout=10.0):
            store = c10d.FileStore(self.file_name, self.world_size)
            c10d.init_process_group(
                backend="nccl",
                rank=self.rank,
                world_size=self.world_size,
                store=store,
                timeout=timedelta(seconds=timeout),
            )
            if with_new_group:
                pg = c10d.new_group(backend="nccl", timeout=timedelta(seconds=timeout))
            else:
                _pg = c10d.ProcessGroupNCCL(
                    store, self.rank, self.world_size, timeout=timedelta(seconds=timeout)
                )
                pg = c10d._create_process_group_wrapper(
                    _pg,
                    "unused",
                    store,
                    self.rank,
                    self.world_size,
                    timeout=timeout,
                )
            return pg

        @requires_nccl()
        @skip_if_lt_x_gpu(2)
        def test_collective_hang(self):
            pg = self._create_wrapper_pg(timeout=2.0)
            self._test_collective_hang(pg)

        # NOTE: these tests are separated by debug level instead of combined into
        # one due to https://github.com/pytorch/pytorch/issues/55967, they can be
        # combined after that is resolved.
        @requires_nccl()
        @skip_if_lt_x_gpu(2)
        @with_dist_debug_levels(levels=["DETAIL"])
        def test_collectives_op_mismatch_debug_mode(self):
            pg = self._create_wrapper_pg(with_new_group=True)
            self._test_collectives_op_mismatch(pg, use_cuda=True)
            self._test_nccl_only_op_mismatch(pg)

        @requires_nccl()
        @skip_if_lt_x_gpu(2)
        @with_dist_debug_levels(levels=["OFF"])
        def test_collectives_op_mismatch(self):
            pg = self._create_wrapper_pg(with_new_group=False)
            self._test_collectives_op_mismatch(pg, use_cuda=True)
            self._test_nccl_only_op_mismatch(pg)

        @requires_nccl()
        @skip_if_lt_x_gpu(2)
        @with_dist_debug_levels(levels=["DETAIL"])
        def test_collective_shape_mismatch_debug_mode(self):
            pg = self._create_wrapper_pg(with_new_group=True)
            self._test_collective_shape_mismatch(pg, use_cuda=True)
            self._test_nccl_only_shape_mismatch(pg)

        @requires_nccl()
        @skip_if_lt_x_gpu(2)
        @with_dist_debug_levels(levels=["OFF"])
        def test_collective_shape_mismatch(self):
            pg = self._create_wrapper_pg(with_new_group=False)
            self._test_collective_shape_mismatch(pg, use_cuda=True)
            self._test_nccl_only_shape_mismatch(pg)

        def _test_nccl_only_op_mismatch(self, wrapper_pg):
            device = f"cuda:{self.rank}"
            with self.assertRaisesRegex(RuntimeError, ".*") as cm:
                output = torch.zeros(4 + self.rank, device=device)
                input = torch.ones(4 * self.world_size, device=device)
                if self.rank == 0:
                    wrapper_pg._allgather_base(output, input).wait()
                else:
                    wrapper_pg._reduce_scatter_base(output, input).wait()
            self._validate_error(
                exception=cm.exception,
                op_type="ALLGATHER_BASE" if self.rank == 0 else "REDUCE_SCATTER_BASE",
                rank=self.rank,
                tensor=input,
            )

        def _test_nccl_only_shape_mismatch(self, wrapper_pg):
            device = f"cuda:{self.rank}"
            with self.assertRaisesRegex(RuntimeError, ".*") as cm:
                output = torch.zeros(4 + self.rank, device=device)
                input = torch.ones(4 * self.world_size, device=device)

                wrapper_pg._reduce_scatter_base(output, input).wait()
            self._validate_error(
                exception=cm.exception,
                op_type="REDUCE_SCATTER_BASE",
                rank=self.rank,
                tensor=input,
            )
            with self.assertRaisesRegex(RuntimeError, ".*") as cm:
                output = torch.zeros(4, device=device)
                input = torch.ones((4 + self.rank) * self.world_size, device=device)

                wrapper_pg._reduce_scatter_base(output, input).wait()
            self._validate_error(
                exception=cm.exception,
                op_type="REDUCE_SCATTER_BASE",
                rank=self.rank,
                tensor=input,
            )


@requires_gloo()
class ProcessGroupGlooWrapperTest(AbstractProcessGroupWrapperTest):
    def setUp(self):
        super(ProcessGroupGlooWrapperTest, self).setUp()

    def opts(self, threads=2, timeout=10.0):
        opts = c10d.ProcessGroupGloo._Options()
        opts._timeout = timeout
        opts._devices = [create_device(interface=LOOPBACK)]
        opts._threads = threads
        return opts

    def _create_wrapper_pg(self, with_new_group=False, timeout=10.0):
        store = c10d.FileStore(self.file_name, self.world_size)
        c10d.init_process_group(
            backend="gloo", rank=self.rank, world_size=self.world_size, store=store
        )
        if with_new_group:
            pg = c10d.new_group(backend="gloo")
        else:
            _pg = c10d.ProcessGroupGloo(
                store, self.rank, self.world_size, self.opts(timeout=timeout)
            )
            pg = c10d._create_process_group_wrapper(
                _pg,
                "unused",
                store,
                self.rank,
                self.world_size,
                timeout=timeout,
            )
        return pg

    def test_collective_hang(self):
        pg = self._create_wrapper_pg(timeout=2.0)
        self._test_collective_hang(pg)

    # NOTE: these tests are separated by debug level instead of combined into
    # one due to https://github.com/pytorch/pytorch/issues/55967, they can be
    # combined after that is resolved.
    @with_dist_debug_levels(levels=["DETAIL"])
    def test_collectives_op_mismatch_debug_mode(self):
        pg = self._create_wrapper_pg(with_new_group=True)
        self._test_collectives_op_mismatch(pg)

    @with_dist_debug_levels(levels=["OFF"])
    def test_collectives_op_mismatch(self):
        pg = self._create_wrapper_pg(with_new_group=False)
        self._test_collectives_op_mismatch(pg)

    @with_dist_debug_levels(levels=["DETAIL"])
    def test_collective_shape_mismatch_debug_mode(self):
        pg = self._create_wrapper_pg(with_new_group=True)
        self._test_collective_shape_mismatch(pg)

    @with_dist_debug_levels(levels=["OFF"])
    def test_collective_shape_mismatch(self):
        pg = self._create_wrapper_pg(with_new_group=False)
        self._test_collective_shape_mismatch(pg)

    @skip_if_lt_x_gpu(4)
    @with_dist_debug_levels(levels=["DETAIL"])
    def test_collectives_op_mismatch_cuda_debug_mode(self):
        pg = self._create_wrapper_pg(with_new_group=True)
        self._test_collectives_op_mismatch(pg, use_cuda=True)

    @skip_if_lt_x_gpu(4)
    @with_dist_debug_levels(levels=["OFF"])
    def test_collectives_op_mismatch_cuda(self):
        pg = self._create_wrapper_pg(with_new_group=False)
        self._test_collectives_op_mismatch(pg, use_cuda=True)

    @skip_if_lt_x_gpu(4)
    @with_dist_debug_levels(levels=["DETAIL"])
    def test_collective_shape_mismatch_cuda_debug_mode(self):
        pg = self._create_wrapper_pg(with_new_group=True)
        self._test_collective_shape_mismatch(pg, use_cuda=True)

    @skip_if_lt_x_gpu(4)
    @with_dist_debug_levels(levels=["OFF"])
    def test_collective_shape_mismatch_cuda(self):
        pg = self._create_wrapper_pg(with_new_group=False)
        self._test_collective_shape_mismatch(pg, use_cuda=True)


if __name__ == "__main__":
    assert (
        not torch.cuda._initialized
    ), "test_pg_wrapper must not have initialized CUDA context on main process"

    run_tests()