1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
|
import argparse
import datetime
import re
import sys
import warnings
from collections import defaultdict
import torch
from torch._C import parse_schema
# How to run this test locally:
# 1 Have two virtual environments (eg conda env), one without PyTorch installed (venv_nightly)
# one with your local changes (venv_yours).
# In venv_nightly:
# 2. First ensure that Pytorch is uninstalled, but all prereqs are installed
# 3. Install torch nightly build with
# `pip install --pre torch -f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html`
# 4. Generate original schemas with
# `python test/forward_backward_compatibility/dump_all_function_schemas.py --filename nightly_schemas.txt`
# Now in venv_yours:
# 5. Run this test with
# `python test/forward_backward_compatibility/check_forward_backward_compatibility.py --existing-schemas nightly_schemas.txt`
# The date specifies how long the allowlist exclusion should apply to.
#
# - If we NEVER give BC guarantee for an operator, you can put the
# date arbitrarily far in the future.
# - Otherwise, pick a date that is far enough in the future that you
# believe you can land your diff before then.
#
# Allowlist entries can be removed after the date listed on them passes.
#
# Allowlist item format:
# [
# 0: function name regex
# 1: date until which the allowlist entry is valid
# 2: (optional) function argument regex
# ]
#
# NB: function name DOES NOT include overload name!
ALLOW_LIST = [
("c10_experimental", datetime.date(2222, 1, 1)),
# Internal
("static", datetime.date(9999, 1, 1)),
("prim::ModuleDictIndex", datetime.date(9999, 1, 1)),
("prim::MKLDNNRelu6", datetime.date(9999, 1, 1)),
("prim::MKLDNNRelu6_", datetime.date(9999, 1, 1)),
("prim::Concat", datetime.date(9999, 1, 1)),
("aten::_NestedTensor_GeneralizedBMM", datetime.date(9999, 1, 1)),
# Internal, profiler-specific ops
("profiler::_call_end_callbacks_on_jit_fut*", datetime.date(9999, 1, 1)),
("profiler::_record_function_enter", datetime.date(9999, 1, 1)),
("aten::_sparse_addmm", datetime.date(2022, 6, 30)),
("aten::kl_div_backward", datetime.date(2022, 9, 1)),
("aten::_cholesky_helper", datetime.date(9999, 1, 1)),
("aten::_lstsq_helper", datetime.date(9999, 1, 1)),
("aten::_syevd_helper", datetime.date(9999, 1, 1)),
("aten::_linalg_solve_out_helper_", datetime.date(9999, 1, 1)),
("aten::select_backward", datetime.date(9999, 1, 1)),
("aten::lstsq", datetime.date(9999, 1, 1)),
("aten::lstsq.X", datetime.date(9999, 1, 1)),
("aten::slice_backward", datetime.date(9999, 1, 1)),
("aten::diagonal_backward", datetime.date(9999, 1, 1)),
("aten::rowwise_prune", datetime.date(9999, 1, 1)),
("aten::eig", datetime.date(9999, 1, 1)),
("aten::eig.e", datetime.date(9999, 1, 1)),
("aten::adaptive_avg_pool3d_backward", datetime.date(9999, 1, 1)),
("aten::_embedding_bag_dense_backward", datetime.date(9999, 1, 1)),
("aten::matrix_rank", datetime.date(9999, 1, 1)),
("aten::matrix_rank.tol", datetime.date(9999, 1, 1)),
("aten::randperm", datetime.date(9999, 1, 1)),
("aten::linalg_solve", datetime.date(2022, 8, 31)),
("aten::linalg_solve.out", datetime.date(2022, 8, 31)),
("aten::binary_cross_entropy_with_logits_backward", datetime.date(2022, 9, 21)),
("aten::_linalg_qr_helper", datetime.date(2022, 8, 1)),
("aten::linalg_lu_solve", datetime.date(2022, 8, 1)),
("aten::linalg_lu_solve.out", datetime.date(2022, 8, 1)),
("aten::linalg_det", datetime.date(2022, 8, 1)),
("aten::linalg_det.out", datetime.date(2022, 8, 1)),
("aten::_det_lu_based_helper", datetime.date(2022, 8, 1)),
("aten::slogdet", datetime.date(2022, 8, 1)),
("aten::slogdet.out", datetime.date(2022, 8, 1)),
("aten::linalg_slogdet", datetime.date(2022, 8, 1)),
("aten::linalg_slogdet.out", datetime.date(2022, 8, 1)),
("aten::_linalg_solve", datetime.date(2022, 10, 1)),
("aten::_linalg_solve.solution", datetime.date(2022, 10, 1)),
("aten::linalg_inv_ex", datetime.date(2022, 10, 1)),
("aten::linalg_inv_ex.inverse", datetime.date(2022, 10, 1)),
("aten::linalg_inv", datetime.date(2022, 10, 1)),
("aten::linalg_inv.out", datetime.date(2022, 10, 1)),
("aten::_linalg_inv_out_helper.functional", datetime.date(2022, 10, 1)),
("aten::_linalg_inv_out_helper.out", datetime.date(2022, 10, 1)),
("aten::_linalg_inv_out_helper_", datetime.date(2022, 10, 1)),
("aten::_linalg_inv_out_helper", datetime.date(2022, 10, 1)),
("aten::col2im_backward", datetime.date(2022, 12, 1)),
("aten::im2col_backward", datetime.date(2022, 12, 1)),
("aten::solve", datetime.date(9999, 1, 1)),
("aten::solve.solution", datetime.date(9999, 1, 1)),
("aten::_solve_helper", datetime.date(9999, 1, 1)),
("aten::_convolution_nogroup", datetime.date(9999, 1, 1)),
("aten::miopen_convolution_backward", datetime.date(9999, 1, 1)),
("aten::miopen_convolution_backward_bias", datetime.date(9999, 1, 1)),
("aten::miopen_convolution_backward_input", datetime.date(9999, 1, 1)),
("aten::miopen_convolution_backward_weight", datetime.date(9999, 1, 1)),
("aten::miopen_convolution_transpose_backward", datetime.date(9999, 1, 1)),
("aten::miopen_convolution_transpose_backward_input", datetime.date(9999, 1, 1)),
("aten::miopen_convolution_transpose_backward_weight", datetime.date(9999, 1, 1)),
("aten::miopen_depthwise_convolution_backward", datetime.date(9999, 1, 1)),
("aten::miopen_depthwise_convolution_backward_input", datetime.date(9999, 1, 1)),
("aten::miopen_depthwise_convolution_backward_weight", datetime.date(9999, 1, 1)),
("aten::_nested_tensor", datetime.date(9999, 1, 1)),
("prepacked::unpack_prepacked_sizes_conv2d", datetime.date(9999, 1, 1)),
("prepacked::unpack_prepacked_sizes_linear", datetime.date(9999, 1, 1)),
("aten::linalg_solve", datetime.date(2022, 8, 31)),
("aten::linalg_solve.out", datetime.date(2022, 8, 31)),
("aten::quantile", datetime.date(2022, 9, 30)),
("aten::nanquantile", datetime.date(2022, 9, 30)),
("aten::native_multi_head_self_attention", datetime.date(9999, 1, 1)),
("aten::_native_multi_head_self_attention", datetime.date(9999, 1, 1)),
("aten::grid_sampler_3d_backward", datetime.date(9999, 1, 1)),
("aten::_transform_bias_rescale_qkv", datetime.date(9999, 1, 1)),
("aten::_s_where", datetime.date(2022, 9, 30)),
("prim::infer_squeeze_size.dim", datetime.date(9999, 1, 1)),
("prim::infer_squeeze_size", datetime.date(9999, 1, 1)),
("aten::_weight_norm_cuda_interface", datetime.date(9999, 1, 1)),
("aten::_weight_norm_cuda_interface_backward", datetime.date(9999, 1, 1)),
("aten::segment_reduce", datetime.date(2022, 6, 30)),
("aten::_segment_reduce_backward", datetime.date(2022, 6, 30)),
("aten::empty.SymInt", datetime.date(9999, 1, 1)),
("aten::.*functional", datetime.date(2022, 8, 1)),
("aten::_foreach.*", datetime.date(2022, 8, 1)),
("aten::unflatten", datetime.date(2022, 8, 10)),
("aten::nanmean", datetime.date(2022, 8, 30)),
("aten::nanmean.out", datetime.date(2022, 8, 30)),
("aten::nansum", datetime.date(2022, 8, 30)),
("aten::nansum.out", datetime.date(2022, 8, 30)),
# nested tensor temporary auxiliary ops
("aten::_reshape_nested", datetime.date(9999, 1, 1)),
("aten::_reshape_nested_backward", datetime.date(9999, 1, 1)),
("aten::sum.SymInt", datetime.date(2022, 11, 30)),
("aten::mps_linear", datetime.date(9999, 1, 1)),
("aten::_mps_linear", datetime.date(9999, 1, 1)),
("aten::view_copy.SymInt", datetime.date(2022, 11, 30)),
("aten::view_copy.SymInt_out", datetime.date(2022, 11, 30)),
("aten::expand_copy.SymInt", datetime.date(2022, 11, 30)),
("aten::expand_copy.SymInt_out", datetime.date(2022, 11, 30)),
("aten::expand.SymInt", datetime.date(2022, 11, 30)),
("aten::narrow_copy.SymInt", datetime.date(2022, 11, 30)),
("aten::narrow_copy.SymInt_out", datetime.date(2022, 11, 30)),
("aten::view.SymInt", datetime.date(2022, 11, 30)),
("aten::new_empty.SymInt", datetime.date(2022, 11, 30)),
("aten::new_empty.SymInt_out", datetime.date(2022, 11, 30)),
("aten::zeros.SymInt", datetime.date(2022, 11, 30)),
("aten::zeros.SymInt_out", datetime.date(2022, 11, 30)),
# TODO: FIXME: prims shouldn't be checked
("prims::.*", datetime.date(9999, 1, 1)),
("aten::_amp_foreach_non_finite_check_and_unscale.out", datetime.date(2022, 9, 1)),
("aten::_amp_foreach_non_finite_check_and_unscale_", datetime.date(2022, 9, 1)),
("aten::_cudnn_rnn_backward.out", datetime.date(2022, 9, 1)),
("aten::_foreach_abs.out", datetime.date(2022, 9, 1)),
("aten::_foreach_abs_", datetime.date(2022, 9, 1)),
("aten::_foreach_acos.out", datetime.date(2022, 9, 1)),
("aten::_foreach_acos_", datetime.date(2022, 9, 1)),
("aten::_foreach_add.List_out", datetime.date(2022, 9, 1)),
("aten::_foreach_add.ScalarList_out", datetime.date(2022, 9, 1)),
("aten::_foreach_add.Scalar_out", datetime.date(2022, 9, 1)),
("aten::_foreach_add_.List", datetime.date(2022, 9, 1)),
("aten::_foreach_add_.Scalar", datetime.date(2022, 9, 1)),
("aten::_foreach_add_.ScalarList", datetime.date(2022, 9, 1)),
("aten::_foreach_addcdiv.ScalarList_out", datetime.date(2022, 9, 1)),
("aten::_foreach_addcdiv.Scalar_out", datetime.date(2022, 9, 1)),
("aten::_foreach_addcdiv_.Scalar", datetime.date(2022, 9, 1)),
("aten::_foreach_addcdiv_.ScalarList", datetime.date(2022, 9, 1)),
("aten::_foreach_addcmul.ScalarList_out", datetime.date(2022, 9, 1)),
("aten::_foreach_addcmul.Scalar_out", datetime.date(2022, 9, 1)),
("aten::_foreach_addcmul_.Scalar", datetime.date(2022, 9, 1)),
("aten::_foreach_addcmul_.ScalarList", datetime.date(2022, 9, 1)),
("aten::_foreach_asin.out", datetime.date(2022, 9, 1)),
("aten::_foreach_asin_", datetime.date(2022, 9, 1)),
("aten::_foreach_atan.out", datetime.date(2022, 9, 1)),
("aten::_foreach_atan_", datetime.date(2022, 9, 1)),
("aten::_foreach_ceil.out", datetime.date(2022, 9, 1)),
("aten::_foreach_ceil_", datetime.date(2022, 9, 1)),
("aten::_foreach_cos.out", datetime.date(2022, 9, 1)),
("aten::_foreach_cos_", datetime.date(2022, 9, 1)),
("aten::_foreach_cosh.out", datetime.date(2022, 9, 1)),
("aten::_foreach_cosh_", datetime.date(2022, 9, 1)),
("aten::_foreach_div.List_out", datetime.date(2022, 9, 1)),
("aten::_foreach_div.ScalarList_out", datetime.date(2022, 9, 1)),
("aten::_foreach_div.Scalar_out", datetime.date(2022, 9, 1)),
("aten::_foreach_div_.List", datetime.date(2022, 9, 1)),
("aten::_foreach_div_.Scalar", datetime.date(2022, 9, 1)),
("aten::_foreach_div_.ScalarList", datetime.date(2022, 9, 1)),
("aten::_foreach_erf.out", datetime.date(2022, 9, 1)),
("aten::_foreach_erf_", datetime.date(2022, 9, 1)),
("aten::_foreach_erfc.out", datetime.date(2022, 9, 1)),
("aten::_foreach_erfc_", datetime.date(2022, 9, 1)),
("aten::_foreach_exp.out", datetime.date(2022, 9, 1)),
("aten::_foreach_exp_", datetime.date(2022, 9, 1)),
("aten::_foreach_expm1.out", datetime.date(2022, 9, 1)),
("aten::_foreach_expm1_", datetime.date(2022, 9, 1)),
("aten::_foreach_floor.out", datetime.date(2022, 9, 1)),
("aten::_foreach_floor_", datetime.date(2022, 9, 1)),
("aten::_foreach_frac.out", datetime.date(2022, 9, 1)),
("aten::_foreach_frac_", datetime.date(2022, 9, 1)),
("aten::_foreach_lgamma.out", datetime.date(2022, 9, 1)),
("aten::_foreach_lgamma_", datetime.date(2022, 9, 1)),
("aten::_foreach_log.out", datetime.date(2022, 9, 1)),
("aten::_foreach_log10.out", datetime.date(2022, 9, 1)),
("aten::_foreach_log10_", datetime.date(2022, 9, 1)),
("aten::_foreach_log1p.out", datetime.date(2022, 9, 1)),
("aten::_foreach_log1p_", datetime.date(2022, 9, 1)),
("aten::_foreach_log2.out", datetime.date(2022, 9, 1)),
("aten::_foreach_log2_", datetime.date(2022, 9, 1)),
("aten::_foreach_log_", datetime.date(2022, 9, 1)),
("aten::_foreach_maximum.List_out", datetime.date(2022, 9, 1)),
("aten::_foreach_maximum_.List", datetime.date(2022, 9, 1)),
("aten::_foreach_minimum.List_out", datetime.date(2022, 9, 1)),
("aten::_foreach_minimum_.List", datetime.date(2022, 9, 1)),
("aten::_foreach_mul.List_out", datetime.date(2022, 9, 1)),
("aten::_foreach_mul.ScalarList_out", datetime.date(2022, 9, 1)),
("aten::_foreach_mul.Scalar_out", datetime.date(2022, 9, 1)),
("aten::_foreach_mul_.List", datetime.date(2022, 9, 1)),
("aten::_foreach_mul_.Scalar", datetime.date(2022, 9, 1)),
("aten::_foreach_mul_.ScalarList", datetime.date(2022, 9, 1)),
("aten::_foreach_neg.out", datetime.date(2022, 9, 1)),
("aten::_foreach_neg_", datetime.date(2022, 9, 1)),
("aten::_foreach_norm.Scalar_out", datetime.date(2022, 9, 1)),
("aten::_foreach_reciprocal.out", datetime.date(2022, 9, 1)),
("aten::_foreach_reciprocal_", datetime.date(2022, 9, 1)),
("aten::_foreach_round.out", datetime.date(2022, 9, 1)),
("aten::_foreach_round_", datetime.date(2022, 9, 1)),
("aten::_foreach_sigmoid.out", datetime.date(2022, 9, 1)),
("aten::_foreach_sigmoid_", datetime.date(2022, 9, 1)),
("aten::_foreach_sin.out", datetime.date(2022, 9, 1)),
("aten::_foreach_sin_", datetime.date(2022, 9, 1)),
("aten::_foreach_sinh.out", datetime.date(2022, 9, 1)),
("aten::_foreach_sinh_", datetime.date(2022, 9, 1)),
("aten::_foreach_sqrt.out", datetime.date(2022, 9, 1)),
("aten::_foreach_sqrt_", datetime.date(2022, 9, 1)),
("aten::_foreach_sub.List_out", datetime.date(2022, 9, 1)),
("aten::_foreach_sub.ScalarList_out", datetime.date(2022, 9, 1)),
("aten::_foreach_sub.Scalar_out", datetime.date(2022, 9, 1)),
("aten::_foreach_sub_.List", datetime.date(2022, 9, 1)),
("aten::_foreach_sub_.Scalar", datetime.date(2022, 9, 1)),
("aten::_foreach_sub_.ScalarList", datetime.date(2022, 9, 1)),
("aten::_foreach_tan.out", datetime.date(2022, 9, 1)),
("aten::_foreach_tan_", datetime.date(2022, 9, 1)),
("aten::_foreach_tanh.out", datetime.date(2022, 9, 1)),
("aten::_foreach_tanh_", datetime.date(2022, 9, 1)),
("aten::_foreach_trunc.out", datetime.date(2022, 9, 1)),
("aten::_foreach_trunc_", datetime.date(2022, 9, 1)),
("aten::_foreach_zero.out", datetime.date(2022, 9, 1)),
("aten::_foreach_zero_", datetime.date(2022, 9, 1)),
("aten::_histogramdd_bin_edges.out", datetime.date(2022, 9, 1)),
("aten::chunk", datetime.date(2022, 9, 1)),
("aten::dequantize.tensors_out", datetime.date(2022, 9, 1)),
("aten::dsplit.array", datetime.date(2022, 9, 1)),
("aten::dsplit.int", datetime.date(2022, 9, 1)),
("aten::hsplit.array", datetime.date(2022, 9, 1)),
("aten::hsplit.int", datetime.date(2022, 9, 1)),
("aten::lstm_mps_backward.out", datetime.date(2022, 9, 1)),
("aten::miopen_rnn_backward.out", datetime.date(2022, 9, 1)),
("aten::quantize_per_tensor.tensors_out", datetime.date(2022, 9, 1)),
("aten::split", datetime.date(2022, 9, 1)),
("aten::split.Tensor", datetime.date(2022, 9, 1)),
("aten::split.sizes", datetime.date(2022, 9, 1)),
("aten::split_copy.Tensor_out", datetime.date(2022, 9, 1)),
("aten::split_with_sizes", datetime.date(2022, 9, 1)),
("aten::split_with_sizes_copy.out", datetime.date(2022, 9, 1)),
("aten::tensor_split.indices", datetime.date(2022, 9, 1)),
("aten::tensor_split.sections", datetime.date(2022, 9, 1)),
("aten::tensor_split.tensor_indices_or_sections", datetime.date(2022, 9, 1)),
("aten::unbind.Dimname", datetime.date(2022, 9, 1)),
("aten::unbind.int", datetime.date(2022, 9, 1)),
("aten::unbind_copy.int_out", datetime.date(2022, 9, 1)),
("aten::unsafe_split.Tensor_out", datetime.date(2022, 9, 1)),
("aten::unsafe_split_with_sizes.out", datetime.date(2022, 9, 1)),
("aten::vsplit.array", datetime.date(2022, 9, 1)),
("aten::vsplit.int", datetime.date(2022, 9, 1)),
("c10d::allreduce_", datetime.date(2022, 10, 1)),
("aten::sym_numel", datetime.date(2022, 10, 1)),
("aten::_flash_scaled_dot_product_attention", datetime.date(2022, 11, 1)),
("aten::_scaled_dot_product_attention", datetime.date(2022, 11, 1)),
# Distributed c10d ops are all going to be updated
("c10d::.*", datetime.date(2022, 10, 31)),
("c10d::allgather_", datetime.date(2022, 10, 1)),
("aten::to_padded_tensor", datetime.date(2022, 10, 1)),
("aten::nested_to_padded_tensor", datetime.date(2022, 10, 1)),
("aten::nested_tensor", datetime.date(2022, 10, 15)),
]
ALLOW_LIST_COMPILED = [
(
re.compile(item[0]),
item[1],
re.compile(item[2]) if len(item) > 2 else None,
) for item in ALLOW_LIST if item[1] >= datetime.date.today()
]
def allow_listed(schema):
for item in ALLOW_LIST_COMPILED:
if item[0].search(str(schema)):
if len(item) > 2 and item[2] is not None:
# if arguments regex is present, use it
return bool(item[2].search(str(schema)))
return True
return False
# The nightly will fail to parse newly added syntax to schema declarations
# Add new schemas that will fail the nightly here
dont_parse_list = [
("_TorchScriptTesting.*", datetime.date(2099, 9, 17)),
("test_backend", datetime.date(2099, 9, 17)),
("dist_c10d", datetime.date(2099, 9, 17)),
("__backends__.nnc", datetime.date(2099, 9, 17)),
]
def has_valid_upgraders(schema, version_map):
# we want to parse through the map to find if
# the schema has valid upgraders. Since the
# version map has entry for each overload
# we need to do some ugly parsing.
# the name of the operator
schema_name = schema.name
if schema_name not in version_map:
return False
entries = version_map[schema_name]
possible_overloads = []
possible_schemas = []
for key, upgrader_schema_entries in entries.items():
possible_overloads.append(key)
possible_schemas.extend(upgrader_schema_entries)
# let's make sure this existing schema is part of possible
# schemas
for old_schema in possible_schemas:
if old_schema == schema:
return True
return False
def dont_parse(schema_line):
for item in dont_parse_list:
if item[1] < datetime.date.today():
continue
regexp = re.compile(item[0])
if regexp.search(schema_line):
return True
return False
def load_schemas_to_dict():
new_schemas = torch._C._jit_get_all_schemas()
new_schemas += torch._C._jit_get_custom_class_schemas()
new_schema_dict = defaultdict(list)
for s in new_schemas:
new_schema_dict[s.name].append(s)
return new_schema_dict
def process_version_map(version_map):
# version map maps full schema name to
# list of upgraders. Since we only have
# the name of the schema (aka no overload)
# we want to first process the map to make
# the key lookup easier. After this it will be:
# Dict[schema_name, Dict[overload, List[schema]]]
output = defaultdict(dict)
for (key, entries) in version_map.items():
operator_name = key.split(".")[0]
schema_entries = [parse_schema(entry.old_schema) for entry in entries]
output[operator_name][key] = schema_entries
return output
def check_bc(existing_schemas):
new_schema_dict = load_schemas_to_dict()
version_map = process_version_map(torch._C._get_operator_version_map())
is_bc = True
broken_ops = []
for existing_schema in existing_schemas:
if allow_listed(existing_schema):
print("schema: ", str(existing_schema), " found on allowlist, skipping")
continue
if has_valid_upgraders(existing_schema, version_map):
print("schema: ", str(existing_schema), " has valid upgrader, skipping")
continue
print("processing existing schema: ", str(existing_schema))
matching_new_schemas = new_schema_dict.get(existing_schema.name, [])
found = False
for matching_new_schema in matching_new_schemas:
if matching_new_schema.is_backward_compatible_with(existing_schema):
found = True
break
if not found:
print(
"Can NOT find backward compatible schemas after changes "
"for schema {} from the following candidates:\n[\n{}\n]".format(
str(existing_schema),
"\n\t".join(str(s) for s in matching_new_schemas),
)
)
# TODO Print out more details about why candidates don't match.
broken_ops.append(str(existing_schema))
is_bc = False
if is_bc:
print("Found backward compatible schemas for all existing schemas")
else:
print(
"The PR is introducing backward incompatible changes to the "
"operator library. Please contact PyTorch team to confirm "
"whether this change is wanted or not. \n\nBroken ops: "
"[\n\t{}\n]".format("\n\t".join(broken_ops))
)
return is_bc
def check_fc(existing_schemas):
new_schema_dict = load_schemas_to_dict()
is_fc = True
broken_ops = []
for existing_schema in existing_schemas:
if allow_listed(existing_schema):
print("schema: ", str(existing_schema), " found on allowlist, skipping")
continue
print("processing existing schema: ", str(existing_schema))
matching_new_schemas = new_schema_dict.get(existing_schema.name, [])
found = False
possible_failure_reasons = []
for matching_new_schema in matching_new_schemas:
is_compatible, reason = matching_new_schema.check_forward_compatible_with(existing_schema)
if is_compatible:
found = True
break
if reason != "":
possible_failure_reasons.append(reason)
if not found:
print(
"Can NOT find forward compatible schemas after changes "
"for schema {} from the following candidates:\n[\n{}\n]".format(
str(existing_schema),
"\n\t".join(str(s) for s in matching_new_schemas),
)
)
print(
"Refer to following reasons for failure "
"to find FC schema:\n[\n{}\n]".format(
"\n\t".join(str(r) for r in possible_failure_reasons)
)
)
broken_ops.append(str(existing_schema))
is_fc = False
if is_fc:
print("Found forward compatible schemas for all existing schemas")
else:
warnings.warn(
"The PR is introducing a potentially forward incompatible changes to the "
"operator library. Please contact PyTorch team to confirm "
"whether this change is wanted or not. \n\nBroken ops: "
"[\n\t{}\n]".format("\n\t".join(broken_ops))
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Process some integers.")
parser.add_argument(
"--existing-schemas",
help="filename to load existing schemas",
type=str,
default="schemas.txt",
)
args = parser.parse_args()
existing_schema_dict = {}
slist = []
with open(args.existing_schemas, "r") as f:
while True:
line = f.readline()
if not line:
break
if dont_parse(line.strip()):
print("Not parsing schema line: ", line.strip())
continue
s = parse_schema(line.strip())
slist.append(s)
# TODO in case there is FC breaking changes,
# we just warn for now until there is a policy.
check_fc(slist)
if not check_bc(slist):
sys.exit(1)
|