File: test_future.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (50 lines) | stat: -rw-r--r-- 1,303 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Owner(s): ["module: fx"]

from __future__ import annotations    # type: ignore[attr-defined]
import torch
import typing
from torch.fx import symbolic_trace

class A:
    def __call__(self, x: torch.Tensor):
        return torch.add(x, x)

# No forward references
class M1(torch.nn.Module):
    def forward(self, x: torch.Tensor, a: A) -> torch.Tensor:
        return a(x)

# Forward references
class M2(torch.nn.Module):
    def forward(self, x: 'torch.Tensor', a: 'A') -> 'torch.Tensor':
        return a(x)

# Non-torch annotation with no internal forward references
class M3(torch.nn.Module):
    def forward(self, x: typing.List[torch.Tensor], a: A) -> torch.Tensor:
        return a(x[0])

# Non-torch annotation with internal forward references
class M4(torch.nn.Module):
    def forward(self, x: typing.List['torch.Tensor'], a: A) -> 'torch.Tensor':
        return a(x[0])

x = torch.rand(2, 3)

ref = torch.add(x, x)

traced1 = symbolic_trace(M1())
res1 = traced1(x, A())
assert torch.all(torch.eq(ref, res1))

traced2 = symbolic_trace(M2())
res2 = traced2(x, A())
assert torch.all(torch.eq(ref, res2))

traced3 = symbolic_trace(M3())
res3 = traced3([x], A())
assert torch.all(torch.eq(ref, res3))

traced4 = symbolic_trace(M4())
res4 = traced4([x], A())
assert torch.all(torch.eq(ref, res4))