1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
|
# Owner(s): ["oncall: jit"]
import io
import os
import sys
import torch
import torch.nn as nn
from typing import Any, Tuple
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase, _inline_everything
from typing import List
from torch import Tensor
class TestAsync(JitTestCase):
def test_async_python(self):
@torch.jit.script
def foo(x):
return torch.neg(x)
x = torch.rand(3, 4)
fut = torch.jit.fork(foo, x)
y_hat = foo(x)
y = torch.jit.wait(fut)
# assert nothing; only to make sure the fake python path works
def test_async_future_type_python(self):
def foo(inp):
futures = torch.jit.annotate(List[torch.jit.Future[torch.Tensor]], [])
for i in range(5):
futures.append(torch.jit.fork(lambda x: x, inp))
all_outputs = []
for future in futures:
all_outputs.append(torch.jit.wait(future))
return all_outputs
# assert nothing, just to make sure python type parsing works
foo(torch.randn(3, 4))
def test_async_parsing(self):
@torch.jit.script
def foo(x: Tensor) -> List[Tensor]:
return [torch.neg(x), x.t()]
@torch.jit.script
def bar(x):
futures = torch.jit.annotate(List[Future[List[Tensor]]], [])
for _ in range(3):
future = torch.jit.annotate(
Future[List[Tensor]],
torch.jit.fork(foo, x)
)
futures.append(future)
output = torch.jit.annotate(List[List[Tensor]], [])
for i in range(3):
output.append(torch.jit.wait(futures[i]))
return output
x = torch.rand(3, 3)
result = bar(x)
self.assertEqual(len(result), 3)
def test_async_script(self):
@torch.jit.script
def foo(x):
return torch.neg(x), x
x = torch.rand(3, 4)
@torch.jit.script
def wait_script(x):
fut = torch.jit.fork(foo, x)
y_hat = foo(x)
y = torch.jit.wait(fut)
return y, y_hat
y, y_hat = wait_script(x)
self.assertEqual(y, y_hat)
def test_async_script_capture(self):
class Mod(torch.jit.ScriptModule):
__constants__ = ['const']
def __init__(self):
super(Mod, self).__init__()
self.const = 42
self.param = nn.Parameter(torch.randn(2, 2))
@torch.jit.script_method
def foo(self, x1, x2):
return torch.neg(x1), self.param, self.const, torch.neg(x2), self.param
@torch.jit.script_method
def forward(self, x1, x2):
fut = torch.jit.fork(self.foo, x1, x2)
y_hat = self.foo(x1, x2)
y = torch.jit.wait(fut)
return y, y_hat
x1 = torch.rand(3, 4)
x2 = torch.rand(5, 6)
m = Mod()
with torch.jit.optimized_execution(False):
y, y_hat = m.forward(x1, x2)
self.assertEqual(y, y_hat)
def test_async_script_nested(self):
@torch.jit.script
def foo(x):
return torch.neg(x), x
x = torch.rand(3, 4)
@torch.jit.script
def wait_script(x):
fut = torch.jit._fork(foo, x)
y_hat = foo(x)
y = torch.jit._wait(fut)
return y, y_hat
@torch.jit.script
def wait_script_nest(x):
fut = torch.jit._fork(wait_script, x)
return torch.jit._wait(fut)
y, y_hat = wait_script_nest(x)
self.assertEqual(y, y_hat)
def test_async_script_no_script_mod(self):
x = torch.rand(3, 4)
with self.assertRaisesRegexWithHighlight(RuntimeError, 'cannot call a value', 'torch.jit._fork(x'):
@torch.jit.script
def wait_script(x):
fut = torch.jit._fork(x)
return fut
def test_async_script_multi_waits(self):
@torch.jit.script
def foo(x):
return torch.neg(x).t() + x
@torch.jit.script
def wait_script(x):
fut = torch.jit._fork(foo, x)
# wait twice on the same future
y1 = torch.jit._wait(fut)
y2 = torch.jit._wait(fut)
return y1, y2
x = torch.rand(2, 2)
y1, y2 = wait_script(x)
self.assertEqual(y1, y2)
def test_async_script_multi_forks(self):
@torch.jit.script
def foo1(x):
return torch.neg(x).t() + x
@torch.jit.script
def foo2(x, y):
return torch.neg(x).t() + x + torch.neg(y).t()
@torch.jit.script
def foo3(x, y, z):
return torch.neg(z).t() + y.t() + x
x1 = torch.rand(10, 10)
x2 = torch.rand(10, 10)
x3 = torch.rand(10, 10)
@torch.jit.script
def wait_script(x1, x2, x3):
f1 = torch.jit._fork(foo1, x1)
f2 = torch.jit._fork(foo2, x1, x2)
f3 = torch.jit._fork(foo3, x1, x2, x3)
f4 = torch.jit._fork(foo1, x2)
f5 = torch.jit._fork(foo2, x2, x3)
# ignore some forks
y1 = torch.jit._wait(f1)
y2 = torch.jit._wait(f2)
y3 = torch.jit._wait(f3)
return y1, y2, y3
y1, y2, y3 = wait_script(x1, x2, x3)
self.assertEqual(y1, foo1(x1))
self.assertEqual(y2, foo2(x1, x2))
self.assertEqual(y3, foo3(x1, x2, x3))
def test_async_kwargs(self):
def foo(x1, x2):
return 2 * x1 + x2
x1 = torch.rand(3, 4)
x2 = torch.rand(3, 4)
y_hat = foo(x1, x2)
# Cover tracing and bare functions with permutations of args, kwargs
for func in [
lambda x1, x2: torch.jit._wait(torch.jit._fork(foo, x1, x2)),
lambda x1, x2: torch.jit._wait(torch.jit._fork(foo, x1, x2=x2)),
lambda x1, x2: torch.jit._wait(torch.jit._fork(foo, x1=x1, x2=x2)),
lambda x1, x2: torch.jit._wait(torch.jit._fork(foo, x2=x2, x1=x1))
]:
for wrapper in [
func,
torch.jit.trace(func, (x1, x2)),
]:
self.assertEqual(wrapper(x1, x2), y_hat)
self.assertEqual(wrapper(x1, x2=x2), y_hat)
self.assertEqual(wrapper(x1=x1, x2=x2), y_hat)
self.assertEqual(wrapper(x2=x2, x1=x1), y_hat)
# Cover scripting
@torch.jit.script
def foo_script_args(x1, x2):
return torch.jit._wait(torch.jit._fork(foo, x1, x2))
@torch.jit.script
def foo_script_kwargs(x1, x2):
return torch.jit._wait(torch.jit._fork(foo, x1=x1, x2=x2))
for wrapper in [
foo_script_args,
foo_script_kwargs,
]:
self.assertEqual(wrapper(x1, x2), y_hat)
self.assertEqual(wrapper(x1, x2=x2), y_hat)
self.assertEqual(wrapper(x1=x1, x2=x2), y_hat)
self.assertEqual(wrapper(x2=x2, x1=x1), y_hat)
@_inline_everything
def test_async_script_trace(self):
class Traced(nn.Module):
def __init__(self):
super(Traced, self).__init__()
def forward(self, x):
return (torch.neg(x), x)
class Mod(torch.jit.ScriptModule):
def __init__(self):
super(Mod, self).__init__()
x = torch.rand(3, 3)
self.traced = torch.jit.trace(Traced(), (x), _force_outplace=True)
@torch.jit.script_method
def forward(self, x: Tensor) -> Tuple[List[Tensor], Tuple[Tensor, Tensor], Tensor]:
future1 = torch.jit._fork(self.traced, x)
future2 = torch.jit._fork(torch.neg, x)
tensor_tuple = torch.jit._wait(future1)
tensor_single = torch.jit._wait(future2)
tensor_list = []
tensor_list.append(tensor_tuple[0])
tensor_list.append(tensor_single)
# return a nested structure of tensors
return (tensor_list, tensor_tuple, tensor_tuple[1])
class TupleCl(nn.Module):
def __init__(self):
super(TupleCl, self).__init__()
self.module = Mod()
def forward(self, x):
z = torch.neg(x)
y = self.module(x)
list = [z, y[0][0], y[0][1], y[1][0], y[1][1], y[2]]
return tuple(list)
x = torch.rand(3, 3)
module = torch.jit.trace(TupleCl(), (x), _force_outplace=True)
# Make sure we have forks
self.assertGraphContainsExactly(module.graph, kind='prim::fork', num_kind_nodes=2)
# Make sure 1 ::neg is in the root graph and 2 ::negs are in the subgraphs
self.assertGraphContainsExactly(module.graph, kind='aten::neg', num_kind_nodes=1)
self.assertGraphContainsExactly(module.graph, kind='aten::neg', num_kind_nodes=3, consider_subgraphs=True)
y = torch.neg(x)
self.assertEqual(module(x), (y, y, y, y, x, x))
def test_async_script_error(self):
x = torch.rand(3, 4)
@torch.jit.script
def foo(x):
# error here
return x.t() + x
@torch.jit.script
def wait_script(x):
fut = torch.jit._fork(foo, x)
return torch.jit._wait(fut)
@torch.jit.script
def wait_script_nest(x):
fut = torch.jit._fork(wait_script, x)
return torch.jit._wait(fut)
# no future
error_msg = 'The size.*must match the size of tensor'
with self.assertRaisesRegexWithHighlight(Exception, error_msg, 'x.t() + x'):
foo(x)
# one future
with self.assertRaisesRegexWithHighlight(Exception, error_msg, 'torch.jit._fork(foo, x'):
wait_script(x)
# two futures with a different error
x = torch.rand(3, 4, 5)
with self.assertRaisesRegexWithHighlight(Exception,
'expects a tensor with <= 2 dimensions',
'torch.jit._fork(wait_script, x'):
wait_script_nest(x)
def test_async_grad_guard_with_grad(self):
@torch.jit.script
def foo(x):
y = x * 2
return y.requires_grad
@torch.jit.script
def bar(x):
fut = torch.jit._fork(foo, x)
requires_grad_in_fork = torch.jit._wait(fut)
z = x * 2
return (requires_grad_in_fork, z.requires_grad)
x = torch.randn(3, requires_grad=True)
with torch.enable_grad():
(inside_fork, after_wait) = bar(x)
self.assertEqual(inside_fork, True)
self.assertEqual(after_wait, True)
def test_async_grad_guard_no_grad(self):
@torch.jit.script
def foo(x):
y = x * 2
return y.requires_grad
@torch.jit.script
def bar(x):
fut = torch.jit._fork(foo, x)
requires_grad_in_fork = torch.jit._wait(fut)
z = x * 2
return (requires_grad_in_fork, z.requires_grad)
x = torch.randn(3, requires_grad=True)
with torch.no_grad():
(inside_fork, after_wait) = bar(x)
self.assertEqual(inside_fork, False)
self.assertEqual(after_wait, False)
def test_trace_fork_wait(self):
def fork_body(x):
return x.neg(), x.neg() + 1
def fn(x):
fut = torch.jit._fork(fork_body, x)
vals = torch.jit._wait(fut)
return vals[0], vals[1], x - 1
traced = torch.jit.trace(fn, (torch.rand(3, 4),))
x = torch.rand(3, 4)
self.assertEqual(fn(x), traced(x))
self.assertGraphContainsExactly(traced.graph, kind='prim::fork', num_kind_nodes=1)
self.assertGraphContainsExactly(traced.graph, kind='aten::wait', num_kind_nodes=1)
self.assertGraphContainsExactly(traced.graph, kind='aten::neg', num_kind_nodes=2, consider_subgraphs=True)
def test_trace_fork_wait_leaking(self):
my_list = []
def fork_body(x):
my_list.append(x + 1)
return x + 1
def fn(x):
fut = torch.jit._fork(fork_body, x)
val = torch.jit._wait(fut)
return my_list[0]
with self.assertRaisesRegexWithHighlight(RuntimeError, 'did not have observable data dependence with trace inputs; '
'this probably indicates your program cannot be understood '
'by the tracer.', ''):
traced = torch.jit.trace(fn, (torch.rand(3, 4),), check_trace=False)
def test_trace_fork_wait_inline(self):
def fork_body(x):
return x + 1, x + 2
def fn(x):
fut = torch.jit._fork(fork_body, x)
val = torch.jit._wait(fut)
return val[1]
traced = torch.jit.trace(fn, (torch.rand(3, 4),))
torch._C._jit_pass_inline_fork_wait(traced.graph)
self.assertGraphContainsExactly(traced.graph, kind='prim::fork', num_kind_nodes=0)
self.assertGraphContainsExactly(traced.graph, kind='aten::wait', num_kind_nodes=0)
self.assertGraphContainsExactly(traced.graph, kind='aten::add', num_kind_nodes=2)
def test_trace_fork_wait_inline_onnx(self):
def fork_body(x):
return torch.neg(x), torch.neg(x)
class MyMod(torch.nn.Module):
def forward(self, x):
fut = torch.jit._fork(fork_body, x)
val = torch.jit._wait(fut)
return val[1]
# smoke test for ONNX export
f = io.BytesIO()
torch.onnx.export(MyMod(), (torch.rand(3, 4),), f)
def test_trace_fork_wait_list_modulecalls(self):
def add_one(input):
return input + torch.ones(input.size())
class TestListFutureModule(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input):
input_list = []
for i in range(3):
input_list.append(input)
fut_list: List[Future[torch.Tensor]] = []
for input_tensor in input_list:
fut_list.append(torch.jit._fork(add_one, input_tensor))
# return list[future[tensor]] here to ensure tracing
# module calls return the correct types
return fut_list
class TestModuleWrapper(nn.Module):
def __init__(self):
super().__init__()
self.list_fut_mod = TestListFutureModule()
def forward(self, input):
fut_list = self.list_fut_mod(input)
res = input
for fut in fut_list:
res = res + fut.wait()
return res
self.checkTrace(TestModuleWrapper(), (torch.randn(5, 5),))
def test_trace_modulecalls_with_different_output_types(self):
def add_one(input):
return input + torch.ones(input.size())
class DifferentOutputModule(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input):
fut_res = torch.jit._fork(add_one, (input))
# return different types from module call
return input, fut_res
class TestModule(nn.Module):
def __init__(self):
super().__init__()
self.gen_output = DifferentOutputModule()
def forward(self, input):
res, fut_res = self.gen_output(input)
res = res + fut_res.wait()
return res
self.checkTrace(TestModule(), (torch.randn(5, 5),))
def test_no_future_subtype_message(self):
with self.assertRaisesRegexWithHighlight(RuntimeError, 'Future without a contained type', ''):
@torch.jit.script
def forward(self, x):
futs = torch.jit.annotate(List[torch.jit.Future], [])
def test_future_subtyping(self):
"""
Test that futures subtype each other properly.
"""
# Successful subtyping.
def returns_int(x: int) -> int:
return x + x + 1
def returns_future_any(x: int) -> torch.jit.Future[Any]:
return torch.jit._fork(returns_int, (x))
@torch.jit.script
def fn_int(x: int) -> Any:
fut = returns_future_any(x)
return fut.wait()
# Unsuccessful subtyping.
with self.assertRaisesRegexWithHighlight(
RuntimeError,
r"was annotated as having type Future\[float\] but is actually of type Future\[int\]",
"fut = returns_future_float(x"
):
def returns_future_float(x: int) -> torch.jit.Future[float]:
return torch.jit._fork(returns_int, (x))
@torch.jit.script
def fn_float(x: int) -> Any:
fut = returns_future_float(x)
return fut.wait()
if __name__ == '__main__':
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead.")
|