1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
|
# Owner(s): ["oncall: jit"]
import os
import sys
import unittest
from torch.testing._internal.common_utils import GRAPH_EXECUTOR, ProfilingMode, \
num_profiled_runs, enable_profiling_mode_for_profiling_tests
from torch.testing._internal.common_jit import check_against_reference
import torch
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase, disable_autodiff_subgraph_inlining
from torch.testing import FileCheck
from typing import List, Tuple, Optional
if __name__ == '__main__':
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead.")
@unittest.skipIf(GRAPH_EXECUTOR == ProfilingMode.SIMPLE, "Simple Executor doesn't support gradients")
class TestAutodiffSubgraphSlicing(JitTestCase):
# TODO: It is better if we can test directly on graphs instead of the current
# end-to-end fashion.
def _perform_ad_subgraph_slicing(self, fn, *input_sizes):
with disable_autodiff_subgraph_inlining():
with enable_profiling_mode_for_profiling_tests():
ge = torch.jit.script(fn)
inputs = [torch.randn(size, requires_grad=True) for size in input_sizes]
ge(*inputs, profile_and_replay=True)
return ge.graph_for(*inputs)
def assertGraphSize(self, graph, size):
nodes = list(filter(lambda n: (n.kind() != "prim::BailOut" and
n.kind() != "prim::BailoutTemplate" and
n.kind() != "prim::TypeCheck" and
n.kind() != "prim::RequiresGradCheck"),
graph.nodes()))
self.assertEqual(len(list(nodes)), size)
def test_chunk_constant_script_ad(self):
@torch.jit.script
def func(x):
x1, x2 = torch.chunk(x, 2)
return (x1, x2)
input = torch.rand(6, 10).requires_grad_()
with disable_autodiff_subgraph_inlining():
with enable_profiling_mode_for_profiling_tests():
output = func(input, profile_and_replay=True)
FileCheck().check_not("prim::DifferentiableGraph").run(func.graph_for(input))
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, "This threshold is only valid for Profiling Executor")
def test_diff_graph_inline_threshold(self):
with enable_profiling_mode_for_profiling_tests():
NUM_RUNS = 1
with num_profiled_runs(NUM_RUNS):
@torch.jit.script
def foo(x):
# two nodes should be fused
# see https://github.com/pytorch/pytorch/blob/master/torch/csrc/jit/runtime/graph_executor_impl.h#L49
return torch.sigmoid(torch.sigmoid(x))
@torch.jit.script
def bar(x):
# two nodes should NOT be fused
return torch.sigmoid(x)
input = torch.rand([4, 4], requires_grad=True)
foo(input)
foo(input)
bar(input)
bar(input)
self.assertGraphContainsExactly(foo.graph_for(input), 'prim::DifferentiableGraph', 1)
self.assertGraphContainsExactly(bar.graph_for(input), 'prim::DifferentiableGraph', 0)
def test_bias_as_module_attr(self):
with enable_profiling_mode_for_profiling_tests():
class M(torch.nn.Module):
def __init__(self, has_bias):
super(M, self).__init__()
self.ll = torch.nn.Linear(10, 10, has_bias)
def forward(self, x, y):
return self.ll(x + y) * x + y
x = torch.rand(10, 10, requires_grad=True)
no_bias = M(False)
scripted_no_bias = torch.jit.script(no_bias)
scripted_no_bias(x, x)
scripted_no_bias(x, x)
scripted_no_bias(x, x)
has_bias = M(True)
check_against_reference(self, scripted_no_bias, no_bias, lambda x: x, (x, x,), check_types=False)
scripted_has_bias = torch.jit.script(has_bias)
scripted_has_bias(x, x)
scripted_has_bias(x, x)
scripted_has_bias(x, x)
check_against_reference(self, scripted_has_bias, has_bias, lambda x: x, (x, x,), check_types=False)
def test_constructed_bias(self):
with enable_profiling_mode_for_profiling_tests():
def method1(x, weight, b1, b2):
bias = b1 * b2
return torch.nn.functional.linear(x, weight, bias)
N = 10
x = torch.rand(N, N, requires_grad=True)
weight = torch.rand(N, N, requires_grad=True)
b1 = torch.rand(N, N, requires_grad=True)
b2 = torch.rand(N, N, requires_grad=True)
scripted = self.checkScript(method1, (x, weight, b1, b2))
# check_types requires last_graph on scripted to be set, so we just skip it
check_against_reference(self, scripted, method1, lambda x: x, (x, weight, b1, b2), check_types=False)
def test_bias_as_arg(self):
with enable_profiling_mode_for_profiling_tests():
def method1(x, weight, bias: Optional[torch.Tensor]):
return torch.nn.functional.linear(x, weight, bias).relu() + 2
N = 10
x = torch.rand(N, N, requires_grad=True)
weight = torch.rand(N, N, requires_grad=True)
bias = None
scripted = self.checkScript(method1, (x, weight, bias))
# check_types requires last_graph on scripted to be set, so we just skip it
check_against_reference(self, scripted, method1, lambda x: x, (x, weight, bias), check_types=False)
bias = torch.rand(N, N, requires_grad=True)
scripted = self.checkScript(method1, (x, weight, bias))
# check_types requires last_graph on scripted to be set, so we just skip it
check_against_reference(self, scripted, method1, lambda x: x, (x, weight, bias), check_types=False)
def test_requires_grad_for_tensor_list(self):
with enable_profiling_mode_for_profiling_tests():
# output & var_list[0] should have requires_grad set to True
def func(input0: torch.Tensor, input1: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
var_list = [input0, input1]
var = torch.cat(var_list)
output = var + 1.0
return output, var_list
jit_f = torch.jit.script(func)
input0 = torch.randn((2,), requires_grad=True)
input1 = torch.randn((2,))
output_ref = func(input0, input1)
for i in range(2):
output = jit_f(input0, input1)
assert(output_ref[0].requires_grad == output[0].requires_grad)
assert(output_ref[1][0].requires_grad == output[1][0].requires_grad)
assert(output_ref[1][1].requires_grad == output[1][1].requires_grad)
@unittest.skip("disable until we property handle tensor lists with undefined gradients")
def test_differentiable_graph_ops_requires_grad(self):
x = torch.randn(8, 2, dtype=torch.float).requires_grad_()
y = torch.randn(8, 2, dtype=torch.float)
def t(x : torch.Tensor, y : torch.Tensor, flag : bool):
o = x + 1.0
o1 = torch.relu(o)
o = y + 1.5
o2 = torch.relu(o)
o3 = o1 + o2
if flag:
o = o1 + 1.0
oo1 = torch.relu(o)
o = o2 + 2.5
oo2 = torch.relu(o)
oo3 = oo1 + oo2
else:
o = o1 * 1.0
oo1 = torch.relu(o)
o = o2 * 2.0
oo2 = torch.relu(o)
oo3 = oo1 + oo2
return o1, o2, o3, oo1, oo2, oo3
with enable_profiling_mode_for_profiling_tests():
t_jit = torch.jit.script(t)
jit_o = t_jit(x, y, False)
jit_o = t_jit(x, y, False)
o = t(x, y, False)
FileCheck().check("prim::DifferentiableGraph").run(t_jit.graph_for(x, y, False))
# validate the differentiableGraphOps are marking proper requires_grad
for oo, jit_oo in zip(o, jit_o):
self.assertEqual(oo.requires_grad, jit_oo.requires_grad)
self.assertEqual(oo, jit_oo)
# one more runs to trigger fusion
jit_o = t_jit(x, y, False)
for oo, jit_oo in zip(o, jit_o):
self.assertEqual(oo.dtype, jit_oo.dtype)
self.assertEqual(oo.requires_grad, jit_oo.requires_grad)
self.assertEqual(oo, jit_oo)
@unittest.skipIf(GRAPH_EXECUTOR == ProfilingMode.PROFILING, "Simple Executor doesn't support gradients")
def test_prune_grad(self):
@torch.jit.script
def t(input, bias):
return torch.nn.functional.relu(input + bias)
input = torch.randn(2, 8, requires_grad=True)
bias = torch.randn(8, requires_grad=False) # bias does NOT require grad
NUM_PROFILED_RUNS = 1
with num_profiled_runs(NUM_PROFILED_RUNS):
WARMUP = 3 # 2 runs to reach backward + 1 to optimize it
for x in range(WARMUP):
o = t(input, bias)
o.sum().backward()
fwd_plan = list(t.get_debug_state().execution_plans.values())[0]
bwd_graph = list(fwd_plan.code.grad_executor_states()[0].execution_plans.values())[0].graph
tup = next(bwd_graph.outputs())
self.assertEqual(len(list(tup.node().inputs())), 1)
def test_simple_merge(self):
# o --> o
def fn(x, y, z):
a = x * y
b = a * z
return b
graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1)
self.assertGraphSize(graph, 1)
self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 1)
def test_simple_no_merge(self):
# o: autodiff supported. x: not autodiff supported.
# o --> x
def fn(x, y, z):
a = x * y
b = torch.zeros([abs(int(y))])
return a, b
graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1)
g_str = str(graph)
FileCheck().check("aten::Int").check("aten::zeros").check_not("aten::mul").run(g_str[0:g_str.find("return")])
self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 1)
def test_does_not_merge_unrelated(self):
# o o
def fn(w, x, y, z):
a = x * y
b = w * z
return a, b
graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1, 1)
self.assertGraphSize(graph, 3)
self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 2)
def test_merges_without_cycles(self):
# o --> o --> o
# | ^
# \_________/
def fn(w, x, y):
a = w * x
b = a * y
c = a * b
return c
graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1)
self.assertGraphSize(graph, 1)
self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 1)
def test_merges_dense(self):
# o o
# |\ /|
# | \ / |
# | /\ |
# vv vv
# o o
def fn(x, y):
a, b = x.chunk(2)
c, d = y.chunk(2)
return a + c, b + d
graph = self._perform_ad_subgraph_slicing(fn, 2, 2)
self.assertGraphSize(graph, 2)
self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 1)
def test_does_not_create_cycles(self):
# o --> x --> o
# | ^
# \_________/
def fn(w, x, y):
a = w * x
b = torch.zeros(abs(int(a)))
c = a * b
return c
graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1)
self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 2)
def test_merges_up(self):
# o --> x o
# | ^
# \_________/
def fn(w, x, y, z):
a = w * x
b = torch.zeros(abs(int(y)))
c = a * z
return b, c
graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1, 1)
g_str = str(graph)
FileCheck().check_not("aten::add").run(g_str[0:g_str.find("return")])
self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 1)
def test_merges_down(self):
# o x --> o
# | ^
# \_________/
def fn(v, w, x, y):
a = v * w
b = torch.ones(int(y))
c = b * a
return a, c
graph = self._perform_ad_subgraph_slicing(fn, 1, 1, 1, 1)
num_nodes = 4 if GRAPH_EXECUTOR == ProfilingMode.PROFILING else 3
# add moved down
g_str = str(graph)
FileCheck().check_not("aten::add").run(g_str[0:g_str.find("return")])
self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 1)
def test_respects_lexical_scoping(self):
def fn(x, k):
y = x * 1.1
if bool(k):
k = k + y
z = y * k
return z, k
graph = self._perform_ad_subgraph_slicing(fn, 1, 1)
# We should not have combined the two multiplications into
# the same group; they should each be a separate DiffGraph
self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 3)
def test_merge_respects_aliasing(self):
def fn(x, k, cond):
y = x * 1.1
y = y * k
y = y * 2.2
if bool(cond):
z1 = y[0]
z2 = y[1]
z1.add_(3)
out = z2 + k + 3.3
out = out * out
return out
graph = self._perform_ad_subgraph_slicing(fn, [2, 2], [2, 2], 1)
# z2 did did not get merged into the subgraph
FileCheck().check("prim::If").check("aten::select").check_next("aten::select")\
.check_next("aten::add_").check("Differentiable").run(graph)
self.assertGraphContainsExactly(graph, 'prim::DifferentiableGraph', 2)
def test_aliased_outputs(self):
with enable_profiling_mode_for_profiling_tests():
# Case 1: aliasing between relu and t
# is within a DifferentiableGraph. It should be valid
# to merge both split_with_sizes in relu in one graph
input_str = """
graph(%a : Tensor):
%b : Tensor = aten::relu(%a)
%2 : Tensor = aten::t(%b)
return (%2)
"""
graph = torch._C.parse_ir(input_str)
torch._C._jit_pass_create_autodiff_subgraphs(graph, 1)
FileCheck().check("with prim::DifferentiableGraph") \
.check("aten::relu").check("aten::t") \
.run(graph)
# Case 2: aliasing between relu and split_with_sizes
# are both outputs of a Diff graph. It should be invalid
# to merge both split_with_sizes in relu in one graph
# i.e. relu and split_with_sizes should be in different
# differentiable graphs
input_str = """
graph(%a : Tensor):
%b : Tensor = aten::relu(%a)
%0 : int[] = prim::Constant[value=[2, 2, 1]]()
%1 : int = prim::Constant[value=0]()
%2 : Tensor[] = aten::split_with_sizes(%b, %0, %1)
%3 : (Tensor[], Tensor[]) = prim::TupleConstruct(%b, %2)
return (%3)
"""
graph = torch._C.parse_ir(input_str)
torch._C._jit_pass_create_autodiff_subgraphs(graph, 1)
FileCheck().check("Tensor = prim::DifferentiableGraph") \
.check("with prim::DifferentiableGraph") \
.check("Tensor = aten::relu") \
.check_not("aten::split_with_sizes") \
.run(graph)
# Case 3: two aliased nodes in a graph.
# Both `split_with_sizes` should be unfused
input_str = """
graph(%a : Tensor):
%b : Tensor = aten::relu(%a)
%s1 : int[] = prim::Constant[value=[2, 2, 1]]()
%s2 : int[] = prim::Constant[value=[3, 1]]()
%1 : int = prim::Constant[value=0]()
%2 : Tensor[] = aten::split_with_sizes(%b, %s1, %1)
%3 : Tensor[] = aten::split_with_sizes(%b, %s2, %1)
%4 : (Tensor, Tensor[]) = prim::TupleConstruct(%b, %2, %3)
return (%4)
"""
graph = torch._C.parse_ir(input_str)
torch._C._jit_pass_create_autodiff_subgraphs(graph, 1)
FileCheck().check("Tensor = prim::DifferentiableGraph") \
.check("with prim::DifferentiableGraph") \
.check("Tensor = aten::relu") \
.check_not("aten::split_with_sizes") \
.run(graph)
# Case 4: the aliased output has a descendant
# Both should be unfused. Note, %3 comes before %2
# to test that we unfuse in the reverse topo order
input_str = """
graph(%a : Tensor):
%b : Tensor = aten::relu(%a)
%0 : int[] = prim::Constant[value=[2, 2, 1]]()
%1 : int = prim::Constant[value=0]()
%2 : Tensor = aten::t(%b)
%3 : Tensor = aten::relu(%2)
%4 : (Tensor, Tensor, Tensor[]) = prim::TupleConstruct(%b, %3, %2)
return (%4)
"""
graph = torch._C.parse_ir(input_str)
torch._C._jit_pass_create_autodiff_subgraphs(graph, 1)
FileCheck().check("Tensor = prim::DifferentiableGraph") \
.check("with prim::DifferentiableGraph") \
.check("Tensor = aten::relu") \
.check_not("aten::t") \
.run(graph)
# Case 5: multiple aliased groups
# Both should be unfused. Note, %3 comes before %2
# to test that we unfuse in the reverse topo order
input_str = """
graph(%a : Tensor):
%b : Tensor = aten::relu(%a)
%c : Tensor = aten::abs(%a)
%0 : int[] = prim::Constant[value=[2, 2, 1]]()
%1 : int = prim::Constant[value=0]()
%d : Tensor = aten::t(%c)
%2 : Tensor = aten::t(%b)
%3 : Tensor = aten::relu(%2)
%4 : (Tensor, Tensor, Tensor[]) = prim::TupleConstruct(%3, %2, %d, %b, %c, %b)
return (%4)
"""
graph = torch._C.parse_ir(input_str)
torch._C._jit_pass_create_autodiff_subgraphs(graph, 1)
FileCheck().check("Tensor = prim::DifferentiableGraph") \
.check("with prim::DifferentiableGraph") \
.check("Tensor = aten::relu") \
.check_not("aten::t") \
.run(graph)
def test_has_profiled_info_aliasing_outputs(self):
# The expectation is that CallFunction will prevent the final profile node from
# getting merged into the DifferentiableGraph, and that create_autodiff_subgraphs
# will instead add this to the type for %4.
ir = """
graph(%a : Tensor):
%1 : Tensor = prim::profile[profiled_type=Float(requires_grad=0)](%a)
%2 : Tensor = aten::relu(%1)
%3 : Tensor = prim::profile[profiled_type=Float(requires_grad=0)](%2)
%4 : Tensor = aten::relu(%3)
%5 : Tensor = prim::CallFunction(%4)
%6 : Tensor = prim::profile[profiled_type=Float(requires_grad=0)](%4)
return (%6)
"""
graph = torch._C.parse_ir(ir)
torch._C._jit_pass_create_autodiff_subgraphs(graph)
for n in graph.nodes():
if n.kind() == "prim::DifferentiableGraph":
diff_graph = n.g("Subgraph")
outputs = list(diff_graph.outputs())
self.assertEqual(1, len(outputs))
output = outputs[0]
self.assertEqual(False, output.requiresGrad())
FileCheck().check("= prim::DifferentiableGraph") \
.check("with prim::DifferentiableGraph") \
.check(" = aten::relu") \
.check("requires_grad=0") \
.check("aten::relu") \
.run(graph)
|