File: test_backend_nnapi.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (115 lines) | stat: -rw-r--r-- 5,103 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# Owner(s): ["oncall: jit"]

import os
import sys
import unittest

import torch
import torch._C
from pathlib import Path
from test_nnapi import TestNNAPI
from torch.testing._internal.common_utils import TEST_WITH_ASAN

# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)

if __name__ == "__main__":
    raise RuntimeError(
        "This test file is not meant to be run directly, use:\n\n"
        "\tpython test/test_jit.py TESTNAME\n\n"
        "instead."
    )

"""
Unit Tests for Nnapi backend with delegate
Inherits most tests from TestNNAPI, which loads Android NNAPI models
without the delegate API.
"""
# First skip is needed for IS_WINDOWS or IS_MACOS to skip the tests.
# Second skip is because ASAN is currently causing an error.
# It is still unclear how to resolve this. T95764916
torch_root = Path(__file__).resolve().parent.parent.parent
lib_path = torch_root / 'build' / 'lib' / 'libnnapi_backend.so'
@unittest.skipIf(not os.path.exists(lib_path),
                 "Skipping the test as libnnapi_backend.so was not found")
@unittest.skipIf(TEST_WITH_ASAN, "Unresolved bug with ASAN")
class TestNnapiBackend(TestNNAPI):
    def setUp(self):
        super().setUp()

        # Save default dtype
        module = torch.nn.PReLU()
        self.default_dtype = module.weight.dtype
        # Change dtype to float32 (since a different unit test changed dtype to float64,
        # which is not supported by the Android NNAPI delegate)
        # Float32 should typically be the default in other files.
        torch.set_default_dtype(torch.float32)

        # Load nnapi delegate library
        torch.ops.load_library(str(lib_path))

    # Override
    def call_lowering_to_nnapi(self, traced_module, args):
        compile_spec = {"forward": {"inputs": args}}
        return torch._C._jit_to_backend("nnapi", traced_module, compile_spec)

    def test_tensor_input(self):
        # Lower a simple module
        args = torch.tensor([[1.0, -1.0, 2.0, -2.0]]).unsqueeze(-1).unsqueeze(-1)
        module = torch.nn.PReLU()
        traced = torch.jit.trace(module, args)

        # Argument input is a single Tensor
        self.call_lowering_to_nnapi(traced, args)
        # Argument input is a Tensor in a list
        self.call_lowering_to_nnapi(traced, [args])

    # Test exceptions for incorrect compile specs
    def test_compile_spec_santiy(self):
        args = torch.tensor([[1.0, -1.0, 2.0, -2.0]]).unsqueeze(-1).unsqueeze(-1)
        module = torch.nn.PReLU()
        traced = torch.jit.trace(module, args)

        errorMsgTail = r"""
method_compile_spec should contain a Tensor or Tensor List which bundles input parameters: shape, dtype, quantization, and dimorder.
For input shapes, use 0 for run/load time flexible input.
method_compile_spec must use the following format:
{"forward": {"inputs": at::Tensor}} OR {"forward": {"inputs": c10::List<at::Tensor>}}"""

        # No forward key
        compile_spec = {"backward": {"inputs": args}}
        with self.assertRaisesRegex(RuntimeError, "method_compile_spec does not contain the \"forward\" key." + errorMsgTail):
            torch._C._jit_to_backend("nnapi", traced, compile_spec)

        # No dictionary under the forward key
        compile_spec = {"forward": 1}
        with self.assertRaisesRegex(RuntimeError,
                                    "method_compile_spec does not contain a dictionary with an \"inputs\" key, "
                                    "under it's \"forward\" key."
                                    + errorMsgTail):
            torch._C._jit_to_backend("nnapi", traced, compile_spec)

        # No inputs key (in the dictionary under the forward key)
        compile_spec = {"forward": {"not inputs": args}}
        with self.assertRaisesRegex(RuntimeError,
                                    "method_compile_spec does not contain a dictionary with an \"inputs\" key, "
                                    "under it's \"forward\" key."
                                    + errorMsgTail):
            torch._C._jit_to_backend("nnapi", traced, compile_spec)

        # No Tensor or TensorList under the inputs key
        compile_spec = {"forward": {"inputs": 1}}
        with self.assertRaisesRegex(RuntimeError,
                                    "method_compile_spec does not contain either a Tensor or TensorList, under it's \"inputs\" key."
                                    + errorMsgTail):
            torch._C._jit_to_backend("nnapi", traced, compile_spec)
        compile_spec = {"forward": {"inputs": [1]}}
        with self.assertRaisesRegex(RuntimeError,
                                    "method_compile_spec does not contain either a Tensor or TensorList, under it's \"inputs\" key."
                                    + errorMsgTail):
            torch._C._jit_to_backend("nnapi", traced, compile_spec)

    def tearDown(self):
        # Change dtype back to default (Otherwise, other unit tests will complain)
        torch.set_default_dtype(self.default_dtype)