File: test_builtins.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (292 lines) | stat: -rw-r--r-- 9,639 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# Owner(s): ["oncall: jit"]

import os
import sys
import inspect
import unittest
from typing import Dict, List

import torch
from torch.testing import FileCheck

# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase, RUN_CUDA

if __name__ == '__main__':
    raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
                       "\tpython test/test_jit.py TESTNAME\n\n"
                       "instead.")


class TestBuiltins(JitTestCase):
    """
    Tests for TorchScript support of Python builtin functions.
    """

    def test_has_attr(self):
        class HasA(torch.nn.Module):
            def __init__(self):
                super(HasA, self).__init__()
                self.a = 0

        class HasB(torch.nn.Module):
            def __init__(self):
                super(HasB, self).__init__()
                self.b = 1

        class Mod(torch.nn.Module):
            def __init__(self):
                super(Mod, self).__init__()
                self.mods = torch.nn.ModuleList([HasA(), HasB()])

            def forward(self):
                # use a list to encode hasattr results
                l = torch.jit.annotate(List[int], [])
                for mod in self.mods:
                    l.append(int(hasattr(mod, "a")))
                    l.append(int(hasattr(mod, "b")))
                    # actually retrieve the attr to test static refinement
                    if hasattr(mod, "a"):
                        l.append(mod.a)
                    if hasattr(mod, "b"):
                        l.append(mod.b)
                return l

        self.checkModule(Mod(), ())

    def test_has_attr_invalid_args(self):
        class Mod(torch.nn.Module):
            def __init__(self):
                super(Mod, self).__init__()
                self.mod = torch.nn.Linear(1, 1)

            def forward(self, name):
                # not allowed, `name` must be static.
                return hasattr(self.mod, name)

        with self.assertRaisesRegexWithHighlight(RuntimeError, "hasattr", "name"):
            torch.jit.script(Mod())

        class Mod(torch.nn.Module):
            def __init__(self):
                super(Mod, self).__init__()

            def forward(self, name):
                # not allowed, `torch.rand` is not a class type
                return hasattr(torch.rand(2, 3), name)

        with self.assertRaisesRegexWithHighlight(RuntimeError, "hasattr", "name"):
            torch.jit.script(Mod())

    def test_del(self):
        def fn(x: List[int]) -> List[int]:
            a = x * 2
            del a
            return x

        self.checkScript(fn, ([1, 2, 3],))

        with self.assertRaisesRegexWithHighlight(RuntimeError, "undefined value", "a"):
            @torch.jit.script
            def fn(x):
                a = x ** 2
                del a
                return a

        with self.assertRaisesRegexWithHighlight(RuntimeError, "undefined value", "a"):
            @torch.jit.script
            def fn(x):
                a = x ** 2
                if a:
                    del a
                return a

        with self.assertRaisesRegexWithHighlight(RuntimeError, "undefined value", "b"):
            @torch.jit.script
            def fn(x):
                a = x ** 2
                del b
                return a

    def test_del_multiple_operands(self):
        def fn(x: List[int]) -> List[int]:
            a, b, c = x[0], x[1], x[2]
            del a, b, c
            return x

        self.checkScript(fn, ([1, 2, 3],))

        def del_list_multiple_operands(x: List[int]) -> List[int]:
            del x[0], x[1]
            return x

        py_out = del_list_multiple_operands([0, 1, 2])
        jit_out = torch.jit.script(del_list_multiple_operands)([0, 1, 2])
        self.assertEqual(py_out, jit_out)

        def del_dict_multiple_operands(x: Dict[str, int]) -> Dict[str, int]:
            del x['hi'], x['there']
            return x

        py_out = del_dict_multiple_operands({"hi": 5, "there": 6})
        jit_out = torch.jit.script(del_dict_multiple_operands)({"hi": 5, "there": 6})
        self.assertEqual(py_out, jit_out)


class TestTensorBuiltins(JitTestCase):
    def test_tensor_properties(self):
        def should_keep(tensor, name):
            if inspect.isroutine(getattr(tensor, name)):
                return False
            if name.startswith('_'):
                return False
            return True

        tensor = torch.arange(4, dtype=torch.float).view(2, 2)
        keys = dir(tensor)

        # real and imag are only implemented for complex tensors.
        self.assertRaises(RuntimeError, lambda: should_keep(tensor, 'imag'))
        keys.remove('imag')

        properties = [p for p in keys if should_keep(tensor, p)]

        code_template = """
        def fn(x):
            return x.{}
        """

        EQUALITY_MISMATCH = set([
            # TorchScript doesn't have real enums so they return an int instead
            # of the actual value
            'dtype',
            'layout',
        ])
        MISSING_PROPERTIES = set([
            'grad_fn',
            # This is an undocumented property so it's not included
            "output_nr",
            # This has a longer implementation, maybe not worth copying to
            # TorchScript if named tensors don't work there anyways
            'names',
        ])

        for p in properties:
            if p in MISSING_PROPERTIES:
                continue
            code = code_template.format(p)
            cu = torch.jit.CompilationUnit()
            cu.define(code)
            if p in EQUALITY_MISMATCH:
                continue
            self.assertEqual(getattr(tensor, p), cu.fn(tensor))

    def test_tensor_subscript_assign(self):
        def fn1(x):
            a = torch.zeros_like(x, dtype=torch.uint8)
            a[torch.tensor(0)] = torch.tensor(2, dtype=torch.uint8)
            return a

        def fn2(x):
            a = torch.zeros_like(x, dtype=torch.uint8)
            a[0] = 2
            return a

        def fn3(x):
            a = torch.zeros_like(x, dtype=torch.uint8)
            a[torch.tensor(0)] = 2
            return a

        def fn4(x):
            a = torch.zeros_like(x, dtype=torch.uint8)
            a[0] = torch.tensor(2, dtype=torch.uint8)
            return a

        def fn5(x):
            a = torch.zeros_like(x, dtype=torch.float32)
            a[torch.tensor(0)] = 2
            return a

        for fn in (fn1, fn2, fn3, fn4, fn5):
            self.checkScript(fn, (torch.zeros(2, dtype=torch.uint8),))

    @unittest.skipIf(not RUN_CUDA, "requires CUDA")
    def test_tensor_subscript_assign_device(self):
        def fn6(x):
            a = torch.zeros_like(x, dtype=torch.float32, device="cuda")
            a[torch.tensor(0)] = 2
            return a

        self.checkScript(fn6, (torch.zeros(2, dtype=torch.float32, device="cuda"),))

    def test_tensor_item(self):
        def test_scalar_cast(x):
            scalar = x.item()
            return int(scalar), float(scalar)

        graph = torch.jit.script(test_scalar_cast).graph
        FileCheck().check("(int, float) = prim::TupleConstruct").run(graph)
        self.checkScript(test_scalar_cast, (torch.tensor(1.0),))
        self.checkScript(test_scalar_cast, (torch.tensor(1),))

    def test_method_on_number(self):
        def func():
            c = 1
            return c.add(1)
        with self.assertRaisesRegex(RuntimeError, 'object has no attribute or method'):
            torch.jit.script(func)

    # testing implicit conversion of tensors to scalars to match function arguments
    def test_scalar_to_num_conversions(self):
        @torch.jit.script
        def multiple_defs(x):
            c = 1
            x = x + c
            return x

        self.assertTrue("ImplicitTensorToNum" not in str(multiple_defs.graph))

        @torch.jit.script
        def tensor_to_int_script(x, tensor):
            return x.unsqueeze(tensor)

        # location present in error message
        with self.assertRaisesRegex(RuntimeError, "x.unsqueeze"):
            tensor_to_int_script(torch.tensor([2]), torch.tensor([2, 2]))

        def tensor_to_int(x, tensor):
            return x.unsqueeze(tensor)

        @torch.jit.script
        def tensor_to_float_script(x, tensor):
            return x.addcmul(tensor, tensor, value=tensor)

        def tensor_to_float(x, tensor):
            return x.addcmul(tensor, tensor, value=tensor)

        x = torch.zeros(10)
        # float tensor, float tensor with grad, int tensor (can't set grad on int tensor)
        tensors = [torch.tensor(1.1),
                   torch.tensor(1.1, requires_grad=True),
                   torch.tensor(0),
                   torch.tensor([2])]

        script_funs = [tensor_to_int_script, tensor_to_float_script]
        funs = [tensor_to_int, tensor_to_float]

        # return the result, or whether exception was thrown
        def test_func(func, x, tensor):
            try:
                result = func(x, tensor)
            except RuntimeError as e:
                result = True
            except TypeError as e:
                result = True
            return result

        # assert result or exception equal for each (function, inputs)
        for tensor in tensors:
            for i in range(len(script_funs)):
                self.assertEqual(test_func(script_funs[i], x, tensor), test_func(funs[i], x, tensor))