File: test_enum.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (364 lines) | stat: -rw-r--r-- 10,218 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# Owner(s): ["oncall: jit"]

import os
import sys

import torch
from torch.testing import FileCheck
from enum import Enum
from typing import Any, List

# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase, make_global

if __name__ == '__main__':
    raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
                       "\tpython test/test_jit.py TESTNAME\n\n"
                       "instead.")

class TestEnum(JitTestCase):
    def test_enum_value_types(self):
        class IntEnum(Enum):
            FOO = 1
            BAR = 2

        class FloatEnum(Enum):
            FOO = 1.2
            BAR = 2.3

        class StringEnum(Enum):
            FOO = "foo as in foo bar"
            BAR = "bar as in foo bar"

        make_global(IntEnum, FloatEnum, StringEnum)

        @torch.jit.script
        def supported_enum_types(a: IntEnum, b: FloatEnum, c: StringEnum):
            return (a.name, b.name, c.name)

        FileCheck() \
            .check("IntEnum") \
            .check("FloatEnum") \
            .check("StringEnum") \
            .run(str(supported_enum_types.graph))

        class TensorEnum(Enum):
            FOO = torch.tensor(0)
            BAR = torch.tensor(1)

        make_global(TensorEnum)

        def unsupported_enum_types(a: TensorEnum):
            return a.name

        # TODO: rewrite code so that the highlight is not empty.
        with self.assertRaisesRegexWithHighlight(RuntimeError, "Cannot create Enum with value type 'Tensor'", ""):
            torch.jit.script(unsupported_enum_types)

    def test_enum_comp(self):
        class Color(Enum):
            RED = 1
            GREEN = 2

        make_global(Color)

        @torch.jit.script
        def enum_comp(x: Color, y: Color) -> bool:
            return x == y

        FileCheck().check("aten::eq").run(str(enum_comp.graph))

        self.assertEqual(enum_comp(Color.RED, Color.RED), True)
        self.assertEqual(enum_comp(Color.RED, Color.GREEN), False)

    def test_enum_comp_diff_classes(self):
        class Foo(Enum):
            ITEM1 = 1
            ITEM2 = 2

        class Bar(Enum):
            ITEM1 = 1
            ITEM2 = 2

        make_global(Foo, Bar)

        @torch.jit.script
        def enum_comp(x: Foo) -> bool:
            return x == Bar.ITEM1

        FileCheck() \
            .check("prim::Constant") \
            .check_same("Bar.ITEM1") \
            .check("aten::eq") \
            .run(str(enum_comp.graph))

        self.assertEqual(enum_comp(Foo.ITEM1), False)

    def test_heterogenous_value_type_enum_error(self):
        class Color(Enum):
            RED = 1
            GREEN = "green"

        make_global(Color)

        def enum_comp(x: Color, y: Color) -> bool:
            return x == y

        # TODO: rewrite code so that the highlight is not empty.
        with self.assertRaisesRegexWithHighlight(RuntimeError, "Could not unify type list", ""):
            torch.jit.script(enum_comp)

    def test_enum_name(self):
        class Color(Enum):
            RED = 1
            GREEN = 2

        make_global(Color)

        @torch.jit.script
        def enum_name(x: Color) -> str:
            return x.name

        FileCheck() \
            .check("Color") \
            .check_next("prim::EnumName") \
            .check_next("return") \
            .run(str(enum_name.graph))

        self.assertEqual(enum_name(Color.RED), Color.RED.name)
        self.assertEqual(enum_name(Color.GREEN), Color.GREEN.name)

    def test_enum_value(self):
        class Color(Enum):
            RED = 1
            GREEN = 2

        make_global(Color)

        @torch.jit.script
        def enum_value(x: Color) -> int:
            return x.value

        FileCheck() \
            .check("Color") \
            .check_next("prim::EnumValue") \
            .check_next("return") \
            .run(str(enum_value.graph))

        self.assertEqual(enum_value(Color.RED), Color.RED.value)
        self.assertEqual(enum_value(Color.GREEN), Color.GREEN.value)

    def test_enum_as_const(self):
        class Color(Enum):
            RED = 1
            GREEN = 2

        make_global(Color)

        @torch.jit.script
        def enum_const(x: Color) -> bool:
            return x == Color.RED

        FileCheck() \
            .check("prim::Constant[value=__torch__.jit.test_enum.Color.RED]") \
            .check_next("aten::eq") \
            .check_next("return") \
            .run(str(enum_const.graph))

        self.assertEqual(enum_const(Color.RED), True)
        self.assertEqual(enum_const(Color.GREEN), False)

    def test_non_existent_enum_value(self):
        class Color(Enum):
            RED = 1
            GREEN = 2

        make_global(Color)

        def enum_const(x: Color) -> bool:
            if x == Color.PURPLE:
                return True
            else:
                return False

        with self.assertRaisesRegexWithHighlight(RuntimeError, "has no attribute 'PURPLE'", "Color.PURPLE"):
            torch.jit.script(enum_const)

    def test_enum_ivalue_type(self):
        class Color(Enum):
            RED = 1
            GREEN = 2

        make_global(Color)

        @torch.jit.script
        def is_color_enum(x: Any):
            return isinstance(x, Color)

        FileCheck() \
            .check("prim::isinstance[types=[Enum<__torch__.jit.test_enum.Color>]]") \
            .check_next("return") \
            .run(str(is_color_enum.graph))

        self.assertEqual(is_color_enum(Color.RED), True)
        self.assertEqual(is_color_enum(Color.GREEN), True)
        self.assertEqual(is_color_enum(1), False)

    def test_closed_over_enum_constant(self):
        class Color(Enum):
            RED = 1
            GREEN = 2

        a = Color

        @torch.jit.script
        def closed_over_aliased_type():
            return a.RED.value

        FileCheck() \
            .check("prim::Constant[value={}]".format(a.RED.value)) \
            .check_next("return") \
            .run(str(closed_over_aliased_type.graph))

        self.assertEqual(closed_over_aliased_type(), Color.RED.value)

        b = Color.RED

        @torch.jit.script
        def closed_over_aliased_value():
            return b.value

        FileCheck() \
            .check("prim::Constant[value={}]".format(b.value)) \
            .check_next("return") \
            .run(str(closed_over_aliased_value.graph))

        self.assertEqual(closed_over_aliased_value(), Color.RED.value)

    def test_enum_as_module_attribute(self):
        class Color(Enum):
            RED = 1
            GREEN = 2

        class TestModule(torch.nn.Module):
            def __init__(self, e: Color):
                super(TestModule, self).__init__()
                self.e = e

            def forward(self):
                return self.e.value

        m = TestModule(Color.RED)
        scripted = torch.jit.script(m)

        FileCheck() \
            .check("TestModule") \
            .check_next("Color") \
            .check_same("prim::GetAttr[name=\"e\"]") \
            .check_next("prim::EnumValue") \
            .check_next("return") \
            .run(str(scripted.graph))

        self.assertEqual(scripted(), Color.RED.value)

    def test_string_enum_as_module_attribute(self):
        class Color(Enum):
            RED = "red"
            GREEN = "green"

        class TestModule(torch.nn.Module):
            def __init__(self, e: Color):
                super(TestModule, self).__init__()
                self.e = e

            def forward(self):
                return (self.e.name, self.e.value)

        make_global(Color)
        m = TestModule(Color.RED)
        scripted = torch.jit.script(m)

        self.assertEqual(scripted(), (Color.RED.name, Color.RED.value))

    def test_enum_return(self):
        class Color(Enum):
            RED = 1
            GREEN = 2

        make_global(Color)

        @torch.jit.script
        def return_enum(cond: bool):
            if cond:
                return Color.RED
            else:
                return Color.GREEN

        self.assertEqual(return_enum(True), Color.RED)
        self.assertEqual(return_enum(False), Color.GREEN)

    def test_enum_module_return(self):
        class Color(Enum):
            RED = 1
            GREEN = 2

        class TestModule(torch.nn.Module):
            def __init__(self, e: Color):
                super(TestModule, self).__init__()
                self.e = e

            def forward(self):
                return self.e

        make_global(Color)
        m = TestModule(Color.RED)
        scripted = torch.jit.script(m)

        FileCheck() \
            .check("TestModule") \
            .check_next("Color") \
            .check_same("prim::GetAttr[name=\"e\"]") \
            .check_next("return") \
            .run(str(scripted.graph))

        self.assertEqual(scripted(), Color.RED)


    def test_enum_iterate(self):
        class Color(Enum):
            RED = 1
            GREEN = 2
            BLUE = 3

        def iterate_enum(x: Color):
            res: List[int] = []
            for e in Color:
                if e != x:
                    res.append(e.value)
            return res

        make_global(Color)
        scripted = torch.jit.script(iterate_enum)

        FileCheck() \
            .check("Enum<__torch__.jit.test_enum.Color>[]") \
            .check_same("Color.RED") \
            .check_same("Color.GREEN") \
            .check_same("Color.BLUE") \
            .run(str(scripted.graph))

        # PURPLE always appears last because we follow Python's Enum definition order.
        self.assertEqual(scripted(Color.RED), [Color.GREEN.value, Color.BLUE.value])
        self.assertEqual(scripted(Color.GREEN), [Color.RED.value, Color.BLUE.value])

    # Tests that explicitly and/or repeatedly scripting an Enum class is permitted.
    def test_enum_explicit_script(self):

        @torch.jit.script
        class Color(Enum):
            RED = 1
            GREEN = 2

        torch.jit.script(Color)