File: test_ignore_context_manager.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (106 lines) | stat: -rw-r--r-- 3,699 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# Owner(s): ["oncall: jit"]

import os
import sys
import unittest

import torch

# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase
from torch.jit.frontend import _IS_ASTUNPARSE_INSTALLED

if __name__ == "__main__":
    raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
                       "\tpython test/test_jit.py TESTNAME\n\n"
                       "instead.")

class TestIgnoreContextManager(JitTestCase):
    @unittest.skipUnless(_IS_ASTUNPARSE_INSTALLED, "astunparse package is required")
    def test_with_ignore_context_manager_with_inp_out(self):
        class A(torch.nn.Module):
            def __init__(self):
                super(A, self).__init__()

            def forward(self):
                a: int = 4
                b: int = 5
                c: int = 0
                d: int = 6
                with torch.jit._IgnoreContextManager(a="inp:int", b="inp:int", c="out:int", d="out:int"):
                    l = [2 for i in range(a) if i > 2]
                    c = l[0] + a + b
                    d = 9
                return c + d
        model = A()
        s = torch.jit.script(model)
        self.assertEqual(s(), model())
        self.assertEqual(s(), 20)

        class B(torch.nn.Module):
            def __init__(self):
                super(B, self).__init__()

            def forward(self):
                a: int = 4
                b: int = 5
                c: int = 0
                with torch.jit._IgnoreContextManager(a="inp:int", b="inp:int", c="out:int"):
                    l = [2 for i in range(a) if i > 2]
                    c = l[0] + a + b
                return c
        model = B()
        s = torch.jit.script(model)
        self.assertEqual(s(), 11)
        self.assertEqual(s(), model())

        class C(torch.nn.Module):
            def __init__(self):
                super(C, self).__init__()

            def forward(self):
                a: int = 4
                b: int = 5
                with torch.jit._IgnoreContextManager(a="inp:int", b="out:int"):
                    l = [2 for i in range(a) if i > 2]
                    b = l[0] + a
                return b
        model = C()
        s = torch.jit.script(model)
        self.assertEqual(s(), 6)
        self.assertEqual(s(), model())

    @unittest.skipUnless(_IS_ASTUNPARSE_INSTALLED, "astunparse package is required")
    def test_with_ignore_context_manager_with_just_inp(self):
        class A(torch.nn.Module):
            def __init__(self):
                super(A, self).__init__()

            def forward(self):
                a: int = 4
                b: int = 5
                with torch.jit._IgnoreContextManager(a="inp:int", b="inp:int"):
                    l = [2 + b for i in range(a) if i > 2]
                return a
        model = A()
        s = torch.jit.script(model)
        self.assertEqual(s(), 4)
        self.assertEqual(s(), model())

    @unittest.skipUnless(_IS_ASTUNPARSE_INSTALLED, "astunparse package is required")
    def test_with_ignore_context_manager_with_just_out(self):
        class A(torch.nn.Module):
            def __init__(self):
                super(A, self).__init__()

            def forward(self):
                with torch.jit._IgnoreContextManager(c="out:List[int]"):
                    c = [2 for i in range(7) if i > 2]
                c[0] = 3
                return c[0] + c[1]
        model = A()
        s = torch.jit.script(model)
        self.assertEqual(s(), 5)
        self.assertEqual(s(), model())