1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
# Owner(s): ["oncall: jit"]
from typing import Any, Dict, List, Optional, Tuple
from torch.testing._internal.jit_utils import JitTestCase, make_global
from torch.testing import FileCheck
from torch import jit
from jit.test_module_interface import TestModuleInterface # noqa: F401
import os
import sys
import torch
import torch.testing._internal.jit_utils
import torch.nn as nn
from torch.testing._internal.common_utils import freeze_rng_state
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
if __name__ == '__main__':
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead.")
class TestMisc(JitTestCase):
def test_joined_str(self):
def func(x):
hello, test = "Hello", "test"
print(f"{hello + ' ' + test}, I'm a {test}")
print("format blank")
hi = 'hi'
print(f"stuff before {hi}")
print(f"{hi} stuff after")
return x + 1
x = torch.arange(4., requires_grad=True)
# TODO: Add support for f-strings in string parser frontend
# self.checkScript(func, [x], optimize=True, capture_output=True)
with self.capture_stdout() as captured:
out = func(x)
scripted = torch.jit.script(func)
with self.capture_stdout() as captured_script:
out_script = func(x)
self.assertEqual(out, out_script)
self.assertEqual(captured, captured_script)
def test_kwarg_support(self):
with self.assertRaisesRegex(torch.jit.frontend.NotSupportedError, "variable number of arguments"):
class M(torch.nn.Module):
def forward(self, *, n_tokens: int, device_name: str = 2):
pass
torch.jit.script(M())
class M(torch.nn.Module):
def forward(self, *, n_tokens: int, device_name: str):
return n_tokens, device_name
sm = torch.jit.script(M())
with self.assertRaisesRegex(RuntimeError, "missing value for argument 'n_tokens'"):
sm()
with self.assertRaisesRegex(RuntimeError, "positional arg"):
sm(3, 'hello')
self.assertEqual(sm(n_tokens=3, device_name='hello'), (3, 'hello'))
def test_tuple_subscripted_assign(self):
with self.assertRaisesRegex(RuntimeError, "subscripted assignment"):
@torch.jit.script
def foo(a: Tuple[int, int]) -> None:
a[0] = a[1]
with self.assertRaisesRegex(RuntimeError, "augmented assignment"):
@torch.jit.script
def bar(a: Tuple[int, int]) -> None:
a[0] += a[1]
def test_subexpression_List_Future(self):
@torch.jit.script
def fn(x: List[torch.jit.Future[int]]) -> torch.jit.Future[int]:
return x[0]
FileCheck().check('Future[int]').check('Future[int]').run(fn.graph)
def test_subexpression_Future_annotate(self):
@torch.jit.script
def fn() -> torch.jit.Future[int]:
x: List[torch.jit.Future[int]] = []
return x[0]
FileCheck().check("Future[int][]").run(fn.graph)
def test_future_isinstance(self):
@torch.jit.script
def fn(x: Any) -> torch.jit.Future[int]:
assert isinstance(x, jit.Future[int])
return x
FileCheck().check("Future[int]").run(fn.graph)
def test_str_refine_any(self):
def forward(x: Any) -> str:
if isinstance(x, str):
return x
return "foo"
forward = torch.jit.script(forward)
self.assertEqual(forward(1), "foo")
self.assertEqual(forward("bar"), "bar")
def test_subexpression_Tuple_int_int_Future(self):
@torch.jit.script
def fn(x: Tuple[int, int, torch.jit.Future[int]]) -> Tuple[int, torch.jit.Future[int]]:
return x[0], x[2]
FileCheck().check('(int, int, Future[int])').check('(int, Future[int])').run(fn.graph)
def test_subexpression_Dict_int_Future(self):
@torch.jit.script
def fn(x: Dict[int, torch.jit.Future[int]], y: int) -> torch.jit.Future[int]:
return x[y]
FileCheck().check('Dict(int, Future(int))').check('Future[int]').run(fn.graph)
def test_subexpression_Optional(self):
@torch.jit.script
def fn(x: Optional[Dict[int, torch.jit.Future[int]]]) -> Optional[torch.jit.Future[int]]:
if x is not None:
return x[0]
else:
return None
FileCheck().check('Dict(int, Future(int))?').run(fn.graph)
def test_if_returning_any(self):
"""
Check that an if statement can return different
types early from each branch when the return
type of the function is Any.
"""
def if_function(inp: torch.Tensor) -> Any:
if inp.shape[0] == 1:
return inp * inp
else:
return "str"
self.checkScript(if_function, (torch.randn(5),))
def test_hacked_twin(self):
def gen_data():
with freeze_rng_state():
return torch.randn(10), torch.randint(10, (20,)), torch.randn(20)
input, index, value, = gen_data()
input1, index1, value1, = gen_data()
out1 = torch.ops.aten.index_put.hacked_twin(input, [index], value, accumulate=False)
out2 = torch.index_put(input1, [index1], value1, accumulate=False)
self.assertEqual(out1, out2)
torch.ops.aten.index_put_.hacked_twin(input, [index], value, accumulate=False)
torch.index_put_(input1, [index1], value1, accumulate=False)
self.assertEqual(input, input1)
def test_export_opnames_interface(self):
@torch.jit.interface
class OneTwoModule(nn.Module):
def one(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
pass
def two(self, x: torch.Tensor) -> torch.Tensor:
pass
def forward(self, x: torch.Tensor) -> torch.Tensor:
pass
class FooMod(nn.Module):
def one(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
return x + y
def two(self, x: torch.Tensor) -> torch.Tensor:
return 2 * x
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.one(self.two(x), x)
class BarMod(nn.Module):
def one(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
return x * y
def two(self, x: torch.Tensor) -> torch.Tensor:
return 2 / x
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.two(self.one(x, x))
make_global(OneTwoModule)
class M(nn.Module):
sub : OneTwoModule
def __init__(self):
super(M, self).__init__()
self.sub = BarMod()
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.sub.forward(x)
def use_module_interface(mod_list: List[OneTwoModule], x: torch.Tensor):
return mod_list[0].forward(x) + mod_list[1].forward(x)
torch._C._enable_mobile_interface_call_export()
scripted_M_mod = torch.jit.script(M())
self.assertTrue(set(['aten::mul.Scalar', 'aten::mul.Tensor', 'aten::reciprocal']).issubset(
set(torch.jit.export_opnames(scripted_M_mod))))
scripted_M_mod.sub = torch.jit.script(FooMod())
self.assertTrue(set(['aten::add.Tensor', 'aten::mul.Scalar']).issubset(
set(torch.jit.export_opnames(scripted_M_mod))))
def test_math_inf(self):
from math import inf
def foo():
return inf
self.checkScript(foo, ())
def test_list_literal_infer(self):
def expects_intlist(x: List[int]):
x.append(3)
return x
def foo():
return expects_intlist([])
self.checkScript(foo, ())
def annotated_list_fail():
return expects_intlist(torch.jit.annotate([], List[Tensor]))
with self.assertRaises(RuntimeError):
torch.jit.script(annotated_list_fail)
def non_temporary_fail():
a = []
return expects_intlist(a)
with self.assertRaises(RuntimeError):
torch.jit.script(non_temporary_fail)
@torch.jit.script
def test_return():
return []
FileCheck().check("Tensor[] = prim::ListConstruct").run(test_return.graph)
def test_legacy_tensor_constructor(self):
# testing PyObject overload
def test_all_dtypes():
return (
torch.BoolTensor([2]),
torch.LongTensor([3]),
torch.ByteTensor([4]),
torch.CharTensor([5]),
torch.DoubleTensor([6]),
torch.FloatTensor([7]),
torch.IntTensor([8]),
torch.ShortTensor([1]),
torch.HalfTensor([1]),
)
self.checkScript(test_all_dtypes, ())
# now test empty overload
def empty_overload():
return torch.LongTensor(2, 3, 4)
eager = empty_overload()
jit = torch.jit.script(empty_overload)()
eager[:] = 1
jit[:] = 1
self.assertEqual(eager, jit)
def no_inputs():
return torch.DoubleTensor()
self.checkScript(no_inputs, ())
# bad schema
def multiple_args():
return torch.LongTensor(1, [2])
with self.assertRaisesRegex(RuntimeError, "multiple positional arguments that were not all integers"):
torch.jit.script(multiple_args)
# kwarg bad schema
def bad_kwarg():
return torch.LongTensor(hello="1")
with self.assertRaisesRegex(RuntimeError, "hello"):
torch.jit.script(bad_kwarg)
def test_broadcasting_list(self):
"""
Test BroadcastingList and torch.nn._size_N_t alias
"""
from torch._jit_internal import BroadcastingList2
from torch.nn.common_types import _size_2_t
def sum_i(x: _size_2_t) -> int:
return x[0] + x[1]
def sum_f(x: BroadcastingList2[float]) -> float:
return x[0] + x[1]
self.assertTrue(torch.jit.script(sum_i)(4) == 8)
self.assertTrue(torch.jit.script(sum_f)(4.5) == 9.)
def test_parse_ir_annotate(self):
ir = """
graph():
%3 : int[] = prim::Constant[value=annotate(List[int], [])]()
return (%3)
"""
graph = torch._C.parse_ir(ir, True)
func = torch._C._create_function_from_graph("forward", graph)
ret = func()
self.assertTrue(ret == [])
def test_parse_ir_single_element_tensor_positive(self):
ir = """
graph():
%7 : Long(1, strides=[1], requires_grad=0, device=cpu) = prim::Constant[value={0}]()
return (%7)
"""
graph = torch._C.parse_ir(ir, True)
func = torch._C._create_function_from_graph("forward", graph)
ret = func()
self.assertTrue(ret.numel() == 1)
self.assertTrue(len(ret.size()) == 1)
def test_parse_ir_single_element_tensor_negative(self):
ir = """
graph():
%7 : Long(1, strides=[1], requires_grad=0, device=cpu) = prim::Constant[value={-17}]()
return (%7)
"""
graph = torch._C.parse_ir(ir, True)
func = torch._C._create_function_from_graph("forward", graph)
ret = func()
self.assertTrue(ret.numel() == 1)
self.assertTrue(len(ret.size()) == 1)
|