1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
|
# Owner(s): ["oncall: jit"]
import os
import sys
import unittest
from torch.testing._internal.common_utils import enable_profiling_mode_for_profiling_tests, GRAPH_EXECUTOR, ProfilingMode
import torch
import torch.nn as nn
import torch.nn.functional as F
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase, RUN_CUDA
from torch.testing._internal.common_utils import slowTest, suppress_warnings
from torch.testing._internal.common_quantization import skipIfNoFBGEMM
if __name__ == '__main__':
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead.")
try:
import torchvision
HAS_TORCHVISION = True
except ImportError:
HAS_TORCHVISION = False
except RuntimeError:
HAS_TORCHVISION = False
skipIfNoTorchVision = unittest.skipIf(not HAS_TORCHVISION, "no torchvision")
class MnistNet(nn.Module):
def __init__(self):
super(MnistNet, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.reshape(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
class TestModels(JitTestCase):
@staticmethod
def _test_dcgan_models(self, device, check_export_import=True):
class DCGANGenerator(nn.Module):
def __init__(self, nz, ngf, nc):
super(DCGANGenerator, self).__init__()
self.main = nn.Sequential(
# input is Z, going into a convolution
nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d(ngf * 8),
nn.ReLU(True),
# state size. (ngf*8) x 4 x 4
nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(True),
# state size. (ngf*4) x 8 x 8
nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(True),
# state size. (ngf*2) x 16 x 16
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(True),
# state size. (ngf) x 32 x 32
nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
nn.Tanh()
# state size. (nc) x 64 x 64
)
def forward(self, input):
return self.main(input)
class DCGANDiscriminator(nn.Module):
def __init__(self, nc, ndf):
super(DCGANDiscriminator, self).__init__()
self.main = nn.Sequential(
# input is (nc) x 64 x 64
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf) x 32 x 32
nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*2) x 16 x 16
nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*4) x 8 x 8
nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 8),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*8) x 4 x 4
nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
nn.Sigmoid()
)
def forward(self, input):
return self.main(input).view(-1, 1).squeeze(1)
bs, nz, ngf, nc, ndf = 5, 6, 9, 3, 10
self.checkTrace(DCGANGenerator(nz, ngf, nc).to(device),
(torch.rand(bs, nz, 1, 1, device=device),),
export_import=check_export_import)
example_input = DCGANGenerator(nz, ngf, nc).to(device)(torch.rand(bs, nz, 1, 1, device=device))
self.checkTrace(DCGANDiscriminator(nc, ndf).to(device), (example_input,),
export_import=check_export_import)
def test_dcgan_models(self):
self._test_dcgan_models(self, device='cpu')
@unittest.skipIf(not RUN_CUDA, "no CUDA")
def test_dcgan_models_cuda(self):
# XXX: export_import on CUDA modules doesn't work (#11480)
self._test_dcgan_models(self, device='cuda', check_export_import=False)
@staticmethod
def _test_neural_style(self, device, check_export_import=True):
class TransformerNet(torch.nn.Module):
def __init__(self):
super(TransformerNet, self).__init__()
# Initial convolution layers
self.conv1 = ConvLayer(3, 32, kernel_size=9, stride=1)
self.in1 = torch.nn.InstanceNorm2d(32, affine=True)
self.conv2 = ConvLayer(32, 64, kernel_size=3, stride=2)
self.in2 = torch.nn.InstanceNorm2d(64, affine=True)
self.conv3 = ConvLayer(64, 128, kernel_size=3, stride=2)
self.in3 = torch.nn.InstanceNorm2d(128, affine=True)
# Residual layers
self.res1 = ResidualBlock(128)
self.res2 = ResidualBlock(128)
self.res3 = ResidualBlock(128)
self.res4 = ResidualBlock(128)
self.res5 = ResidualBlock(128)
# Upsampling Layers
self.deconv1 = UpsampleConvLayer(128, 64, kernel_size=3, stride=1, upsample=2)
self.in4 = torch.nn.InstanceNorm2d(64, affine=True)
self.deconv2 = UpsampleConvLayer(64, 32, kernel_size=3, stride=1, upsample=2)
self.in5 = torch.nn.InstanceNorm2d(32, affine=True)
self.deconv3 = ConvLayer(32, 3, kernel_size=9, stride=1)
# Non-linearities
self.relu = torch.nn.ReLU()
def forward(self, X):
y = self.relu(self.in1(self.conv1(X)))
y = self.relu(self.in2(self.conv2(y)))
y = self.relu(self.in3(self.conv3(y)))
y = self.res1(y)
y = self.res2(y)
y = self.res3(y)
y = self.res4(y)
y = self.res5(y)
y = self.relu(self.in4(self.deconv1(y)))
y = self.relu(self.in5(self.deconv2(y)))
y = self.deconv3(y)
return y
class ConvLayer(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride):
super(ConvLayer, self).__init__()
reflection_padding = kernel_size // 2
self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding)
self.conv2d = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride)
def forward(self, x):
out = self.reflection_pad(x)
out = self.conv2d(out)
return out
class ResidualBlock(torch.nn.Module):
"""ResidualBlock
introduced in: https://arxiv.org/abs/1512.03385
recommended architecture: http://torch.ch/blog/2016/02/04/resnets.html
"""
def __init__(self, channels):
super(ResidualBlock, self).__init__()
self.conv1 = ConvLayer(channels, channels, kernel_size=3, stride=1)
self.in1 = torch.nn.InstanceNorm2d(channels, affine=True)
self.conv2 = ConvLayer(channels, channels, kernel_size=3, stride=1)
self.in2 = torch.nn.InstanceNorm2d(channels, affine=True)
self.relu = torch.nn.ReLU()
def forward(self, x):
residual = x
out = self.relu(self.in1(self.conv1(x)))
out = self.in2(self.conv2(out))
out = out + residual
return out
class UpsampleConvLayer(torch.nn.Module):
"""UpsampleConvLayer
Upsamples the input and then does a convolution. This method gives better results
compared to ConvTranspose2d.
ref: http://distill.pub/2016/deconv-checkerboard/
"""
def __init__(self, in_channels, out_channels, kernel_size, stride, upsample=None):
super(UpsampleConvLayer, self).__init__()
self.upsample = upsample
if upsample:
self.upsample_layer = torch.nn.Upsample(mode='nearest', scale_factor=upsample)
reflection_padding = kernel_size // 2
self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding)
self.conv2d = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride)
def forward(self, x):
x_in = x
if self.upsample:
x_in = self.upsample_layer(x_in)
out = self.reflection_pad(x_in)
out = self.conv2d(out)
return out
self.checkTrace(TransformerNet(), (torch.rand(5, 3, 16, 16),), export_import=check_export_import)
@slowTest
def test_neural_style(self):
self._test_neural_style(self, device='cpu')
@unittest.skipIf(not RUN_CUDA, "no CUDA")
def test_neural_style_cuda(self):
# XXX: export_import on CUDA modules doesn't work (#11480)
self._test_neural_style(self, device='cuda', check_export_import=False)
@unittest.skipIf(GRAPH_EXECUTOR == ProfilingMode.LEGACY, "Bug found in deprecated executor")
@staticmethod
def _test_mnist(self, device, check_export_import=True):
# eval() is present because dropout makes this nondeterministic
with enable_profiling_mode_for_profiling_tests():
self.checkTrace(MnistNet().to(device).eval(), (torch.rand(5, 1, 28, 28, device=device),),
export_import=check_export_import)
def test_mnist(self):
self._test_mnist(self, device='cpu')
@unittest.skipIf(not RUN_CUDA, "no CUDA")
def test_mnist_cuda(self):
# XXX: export_import on CUDA modules doesn't work (#11480)
self._test_mnist(self, device='cuda', check_export_import=False)
@unittest.skipIf(not RUN_CUDA, "no CUDA")
def test_mnist_training_leaks_no_memory_cuda(self):
net = MnistNet().cuda()
# MnistNet uses dropout, don't check its trace
traced_net = torch.jit.trace(net, [torch.randn(5, 1, 28, 28, device='cuda')],
check_trace=False)
def train(iters):
for _ in range(iters):
# Get some fake data
inp = torch.randn(5, 1, 28, 28, device='cuda')
out = traced_net(inp)
# Here's some fake loss
out.sum().backward()
# Zero out grads
traced_net.zero_grad()
# Set it up so the params have .grad fields so they are not reported as leaks
train(1)
with self.assertLeaksNoCudaTensors():
train(5)
@staticmethod
def _test_reinforcement_learning(self, device, test_export_import=True):
class Policy(nn.Module):
def __init__(self):
super(Policy, self).__init__()
self.affine1 = nn.Linear(4, 128)
self.affine2 = nn.Linear(128, 2)
def forward(self, x):
x = F.relu(self.affine1(x))
action_scores = self.affine2(x)
return F.softmax(action_scores, dim=1)
with enable_profiling_mode_for_profiling_tests():
self.checkTrace(Policy().to(device), (torch.rand(1, 4, device=device),),
export_import=test_export_import)
def test_reinforcement_learning(self):
self._test_reinforcement_learning(self, device='cpu')
@unittest.skipIf(not RUN_CUDA, "no CUDA")
def test_reinforcement_learning_cuda(self):
# XXX: export_import on CUDA modules doesn't work (#11480)
self._test_reinforcement_learning(self, device='cuda', test_export_import=False)
@staticmethod
def _test_snli(self, device, check_export_import=True, quantized=False):
class Bottle(nn.Module):
def forward(self, input):
if len(input.size()) <= 2:
return super(Bottle, self).forward(input)
size = input.size()[:2]
out = super(Bottle, self).forward(input.view(size[0] * size[1], -1))
return out.view(size[0], size[1], -1)
class Linear(Bottle, nn.Linear):
pass
class Encoder(nn.Module):
def __init__(self, config):
super(Encoder, self).__init__()
self.config = config
input_size = config.d_proj if config.projection else config.d_embed
dropout = 0 if config.n_layers == 1 else config.dp_ratio
self.rnn = nn.LSTM(input_size=input_size, hidden_size=config.d_hidden,
num_layers=config.n_layers, dropout=dropout,
bidirectional=config.birnn)
def forward(self, inputs):
batch_size = inputs.size()[1]
state_shape = self.config.n_cells, batch_size, self.config.d_hidden
h0 = c0 = inputs.new_zeros(state_shape)
outputs, (ht, ct) = self.rnn(inputs, (h0, c0))
return ht[-1] if not self.config.birnn else ht[-2:].transpose(0, 1).contiguous().view(batch_size, -1)
class SNLIClassifier(nn.Module):
def __init__(self, config):
super(SNLIClassifier, self).__init__()
self.config = config
self.embed = nn.Embedding(config.n_embed, config.d_embed)
self.projection = Linear(config.d_embed, config.d_proj)
self.encoder = Encoder(config)
self.dropout = nn.Dropout(p=config.dp_ratio)
self.relu = nn.ReLU()
seq_in_size = 2 * config.d_hidden
if self.config.birnn:
seq_in_size *= 2
lin_config = [seq_in_size] * 2
self.out = nn.Sequential(
Linear(*lin_config),
self.relu,
self.dropout,
Linear(*lin_config),
self.relu,
self.dropout,
Linear(*lin_config),
self.relu,
self.dropout,
Linear(seq_in_size, config.d_out))
def forward(self, premise, hypothesis):
prem_embed = self.embed(premise)
hypo_embed = self.embed(hypothesis)
if self.config.fix_emb:
prem_embed = prem_embed.detach()
hypo_embed = hypo_embed.detach()
if self.config.projection:
prem_embed = self.relu(self.projection(prem_embed))
hypo_embed = self.relu(self.projection(hypo_embed))
premise = self.encoder(prem_embed)
hypothesis = self.encoder(hypo_embed)
scores = self.out(torch.cat([premise, hypothesis], 1))
return scores
class Config:
n_embed = 100
d_embed = 100
d_proj = 300
dp_ratio = 0.0 # For deterministic testing TODO: change by fixing seed in checkTrace?
d_hidden = 30
birnn = True
d_out = 300
fix_emb = True
projection = True
n_layers = 2
n_cells = 4 # 2 * n_layers because birnn = True
premise = torch.LongTensor(48, 64).random_(0, 100).to(device)
hypothesis = torch.LongTensor(24, 64).random_(0, 100).to(device)
if quantized:
snli = SNLIClassifier(Config()).cpu()
torch.jit.quantized.quantize_linear_modules(snli)
# we don't do export/import checks because we would need to call
# _pack/_unpack
self.checkTrace(snli, (premise, hypothesis), inputs_require_grads=False,
export_import=False)
else:
self.checkTrace(SNLIClassifier(Config()).to(device), (premise, hypothesis),
inputs_require_grads=False, export_import=check_export_import)
@slowTest
def test_snli(self):
self._test_snli(self, device='cpu')
@skipIfNoFBGEMM
# Suppression: this exercises a deprecated API
@suppress_warnings
def test_snli_quantized(self):
self._test_snli(self, device='cpu', quantized=True)
@unittest.skipIf(not RUN_CUDA, "no CUDA")
def test_snli_cuda(self):
# XXX: export_import on CUDA modules doesn't work (#11480)
self._test_snli(self, device='cuda', check_export_import=False)
@staticmethod
def _test_super_resolution(self, device, check_export_import=True):
class Net(nn.Module):
def __init__(self, upscale_factor):
super(Net, self).__init__()
self.relu = nn.ReLU()
self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
self.conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1))
self.pixel_shuffle = nn.PixelShuffle(upscale_factor)
def forward(self, x):
x = self.relu(self.conv1(x))
x = self.relu(self.conv2(x))
x = self.relu(self.conv3(x))
x = self.pixel_shuffle(self.conv4(x))
return x
net = Net(upscale_factor=4).to(device)
self.checkTrace(net, (torch.rand(5, 1, 32, 32, device=device),),
export_import=check_export_import)
@slowTest
def test_super_resolution(self):
self._test_super_resolution(self, device='cpu')
@unittest.skipIf(not RUN_CUDA, 'no CUDA')
def test_super_resolution_cuda(self):
# XXX: export_import on CUDA modules doesn't work (#11480)
self._test_super_resolution(self, device='cuda', check_export_import=False)
@suppress_warnings
def test_time_sequence_prediction(self):
class Sequence(torch.jit.ScriptModule):
def __init__(self):
super(Sequence, self).__init__()
self.lstm1 = nn.LSTMCell(1, 51)
self.lstm2 = nn.LSTMCell(51, 51)
self.linear = nn.Linear(51, 1)
@torch.jit.script_method
def forward(self, input):
# TODO: add future as input with default val
# see https://github.com/pytorch/pytorch/issues/8724
outputs = torch.empty((3, 0))
h_t = torch.zeros((3, 51))
c_t = torch.zeros((3, 51))
h_t2 = torch.zeros((3, 51))
c_t2 = torch.zeros((3, 51))
output = torch.zeros([3, 51])
future = 2
# TODO: chunk call should appear as the for loop iterable
# We hard-code it to 4 for now.
a, b, c, d = input.chunk(input.size(1), dim=1)
for input_t in (a, b, c, d):
h_t, c_t = self.lstm1(input_t, (h_t, c_t))
h_t2, c_t2 = self.lstm2(h_t, (h_t2, c_t2))
output = self.linear(h_t2)
outputs = torch.cat((outputs, output), 1)
for _ in range(future): # if we should predict the future
h_t, c_t = self.lstm1(output, (h_t, c_t))
h_t2, c_t2 = self.lstm2(h_t, (h_t2, c_t2))
output = self.linear(h_t2)
outputs = torch.cat((outputs, output), 1)
return outputs
class Traced(nn.Module):
def __init__(self):
super(Traced, self).__init__()
self.seq = Sequence()
def forward(self, input):
return self.seq.forward(input)
# disabled due to a jitter issues that will be fixed by using load/store in the compiler
with torch._jit_internal._disable_emit_hooks():
# TODO: toggle export_import once above issues are fixed
self.checkTrace(Traced(), (torch.rand(3, 4),),
export_import=False)
@staticmethod
def _test_vae(self, device, check_export_import=True, quantized=False):
class VAE(nn.Module):
def __init__(self):
super(VAE, self).__init__()
self.fc1 = nn.Linear(784, 400)
self.fc21 = nn.Linear(400, 20)
self.fc22 = nn.Linear(400, 20)
self.fc3 = nn.Linear(20, 400)
self.fc4 = nn.Linear(400, 784)
def encode(self, x):
h1 = F.relu(self.fc1(x))
return self.fc21(h1), self.fc22(h1)
def reparameterize(self, mu, logvar):
if self.training:
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return eps.mul(std).add_(mu)
else:
return mu
def decode(self, z):
h3 = F.relu(self.fc3(z))
return torch.sigmoid(self.fc4(h3))
def forward(self, x):
mu, logvar = self.encode(x.view(-1, 784))
z = self.reparameterize(mu, logvar)
return self.decode(z), mu, logvar
if quantized:
vae = VAE().to(device).eval()
torch.jit.quantized.quantize_linear_modules(vae)
# We don't do export/import checks because we would need to call
# _unpack and _pack
self.checkTrace(vae, (torch.rand(128, 1, 28, 28, device=device),),
export_import=False, allow_unused=True,
inputs_require_grads=False)
else:
with enable_profiling_mode_for_profiling_tests():
# eval() is present because randn_like makes this nondeterministic
self.checkTrace(VAE().to(device).eval(), (torch.rand(128, 1, 28, 28, device=device),),
export_import=check_export_import)
def test_vae(self):
self._test_vae(self, device='cpu')
@skipIfNoFBGEMM
# Suppression: this exercises a deprecated API
@suppress_warnings
def test_vae_quantized(self):
self._test_vae(self, device='cpu', quantized=True)
@unittest.skipIf(not RUN_CUDA, "no CUDA")
def test_vae_cuda(self):
# XXX: export_import on CUDA modules doesn't work (#11480)
self._test_vae(self, device='cuda', check_export_import=False)
@slowTest
@skipIfNoTorchVision
def test_script_module_trace_resnet18(self):
x = torch.ones(1, 3, 224, 224)
m_orig = torch.jit.trace(torchvision.models.resnet18(), torch.ones(1, 3, 224, 224))
m_import = self.getExportImportCopy(m_orig)
input = torch.randn(1, 3, 224, 224, requires_grad=True)
output_orig = m_orig(input)
output_orig.sum().backward()
grad_orig = input.grad.clone()
input.grad.zero_()
output_import = m_import(input)
output_import.sum().backward()
grad_import = input.grad.clone()
self.assertEqual(output_orig, output_import)
self.assertEqual(grad_orig, grad_import)
@slowTest
@skipIfNoTorchVision
def test_script_module_script_resnet(self):
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(torch.jit.ScriptModule):
expansion = 1
__constants__ = ['downsample']
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
@torch.jit.script_method
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(torch.jit.ScriptModule):
__constants__ = ['layer1', 'layer2', 'layer3', 'layer4']
def __init__(self, block, layers, num_classes=1000):
super(ResNet, self).__init__()
self.inplanes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
@torch.jit.script_method
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
resnet18 = ResNet(BasicBlock, [2, 2, 2, 2])
resnet18_imported = self.getExportImportCopy(resnet18)
input = torch.randn(1, 3, 224, 224, requires_grad=True)
output_orig = resnet18(input)
output_orig.sum().backward()
grad_orig = input.grad.clone()
input.grad.zero_()
output_import = resnet18_imported(input)
output_import.sum().backward()
grad_import = input.grad.clone()
self.assertEqual(output_orig, output_import)
self.assertEqual(grad_orig, grad_import)
@skipIfNoTorchVision
def test_alexnet(self):
x = torch.ones(1, 3, 224, 224)
model = torchvision.models.AlexNet()
with torch.random.fork_rng(devices=[]):
g, outputs, inputs = torch.jit._get_trace_graph(model, x, return_inputs=True)
self.run_pass('cse', g)
m = self.createFunctionFromGraph(g)
with torch.random.fork_rng(devices=[]):
self.assertEqual(outputs, m(*inputs))
|