File: test_module_containers.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (705 lines) | stat: -rw-r--r-- 25,462 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
# Owner(s): ["oncall: jit"]

import os
import sys

from typing import Any, List, Tuple
from collections import OrderedDict
import torch
import torch.nn as nn
from torch.testing._internal.jit_utils import JitTestCase

# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)

if __name__ == '__main__':
    raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
                       "\tpython test/test_jit.py TESTNAME\n\n"
                       "instead.")

class TestModuleContainers(JitTestCase):
    def test_sequential_intermediary_types(self):
        class A(torch.nn.Module):
            def __init__(self):
                super(A, self).__init__()

            def forward(self, x):
                return x + 3

        class B(torch.nn.Module):
            def __init__(self):
                super(B, self).__init__()

            def forward(self, x):
                return {"1": x}

        class C(torch.nn.Module):
            def __init__(self):
                super(C, self).__init__()
                self.foo = torch.nn.Sequential(A(), B())

            def forward(self, x):
                return self.foo(x)

        self.checkModule(C(), (torch.tensor(1),))

    def test_moduledict(self):
        class Inner(torch.nn.Module):
            def forward(self, x):
                return x + 10

        class Inner2(torch.nn.Module):
            def forward(self, x):
                return x * 2

        class Inner3(torch.nn.Module):
            def forward(self, x):
                return (x - 4) * 3

        class M(torch.nn.Module):
            def __init__(self):
                super(M, self).__init__()
                modules = OrderedDict([
                    ('one', Inner()),
                    ('two', Inner2()),
                    ('three', Inner3()),
                ])
                self.moduledict = nn.ModuleDict(modules)

            def forward(self, x, skip_name):
                # type: (Tensor, str)
                names = torch.jit.annotate(List[str], [])
                values = []
                for name in self.moduledict:
                    names.append(name)

                for name, mod in self.moduledict.items():
                    if name != skip_name:
                        names.append(name)
                        x = mod(x)
                        values.append(x)

                for mod in self.moduledict.values():
                    x = mod(x)
                    values.append(x)

                for key in self.moduledict.keys():
                    names.append(key)

                return x, names

        class M2(M):
            def __init__(self):
                super(M2, self).__init__()

            def forward(self, x, skip_name):
                # type: (Tensor, str)
                names = torch.jit.annotate(List[str], [])
                values = []
                x2 = x
                iter = 0
                for name in self.moduledict:
                    names.append(name)

                for i, (name, mod) in enumerate(self.moduledict.items()):
                    iter += i
                    if name != skip_name:
                        names.append(name)
                        x = mod(x)
                        values.append(x)

                for i, mod in enumerate(self.moduledict.values()):
                    iter += i
                    x = mod(x)
                    values.append(x)

                for i, key in enumerate(self.moduledict.keys()):
                    iter += i
                    names.append(key)

                for mod, mod in zip(self.moduledict.values(), self.moduledict.values()):
                    iter += i
                    x2 = mod(mod(x2))

                return x, x2, names, iter


        for name in ["", "one", "two", "three"]:
            inp = torch.tensor(1)
            self.checkModule(M(), (inp, name))
            self.checkModule(M2(), (inp, name))

    def test_custom_container_forward(self):
        class Inner(torch.nn.Module):
            def forward(self, x):
                return x + 10

        class CustomSequential(nn.Sequential):
            def __init__(self):
                super(CustomSequential, self).__init__(
                    nn.ReLU(), Inner())

            def forward(self, x):
                x = x + 3
                for mod in self:
                    x = mod(x)
                return x - 5

        self.checkModule(CustomSequential(), (torch.tensor(.5),))

        class CustomModuleList(nn.ModuleList):
            def __init__(self):
                super(CustomModuleList, self).__init__(
                    [nn.ReLU(), Inner()])

            def forward(self, x):
                x = x + 3
                for mod in self:
                    x = mod(x)
                return x - 5

        self.checkModule(CustomModuleList(), (torch.tensor(.5),))

        class CustomModuleDict(nn.ModuleDict):
            def __init__(self):
                super(CustomModuleDict, self).__init__(
                    OrderedDict([
                        ('one', Inner()),
                        ('two', nn.ReLU()),
                        ('three', Inner()),
                    ]))

            def forward(self, x):
                x = x + 3
                names = torch.jit.annotate(List[str], [])
                for name, mod in self.items():
                    x = mod(x)
                    names.append(name)
                return names, x - 5

        self.checkModule(CustomModuleDict(), (torch.tensor(.5),))

    def test_script_module_list_sequential(self):
        class M(torch.jit.ScriptModule):
            def __init__(self, mod_list):
                super(M, self).__init__()
                self.mods = mod_list

            @torch.jit.script_method
            def forward(self, v):
                for m in self.mods:
                    v = m(v)
                return v

        with torch.jit.optimized_execution(False):
            m = M(nn.Sequential(nn.ReLU()))
            self.assertExportImportModule(m, (torch.randn(2, 2),))

    def test_script_modulelist_index(self):
        class Sub(torch.nn.Module):
            def __init__(self, i):
                super(Sub, self).__init__()
                self.i = i

            def forward(self, thing):
                return thing - self.i

        class M(torch.nn.Module):
            def __init__(self):
                super(M, self).__init__()
                self.mods = nn.ModuleList([Sub(i) for i in range(10)])

            def forward(self, v):
                v = self.mods[4].forward(v)
                v = self.mods[-1].forward(v)
                v = self.mods[-9].forward(v)
                return v

        x = torch.tensor(1)
        self.checkModule(M(), (x,))

        class MForward(torch.nn.Module):
            def __init__(self):
                super(MForward, self).__init__()
                self.mods = nn.ModuleList([Sub(i) for i in range(10)])

            def forward(self, v):
                v = self.mods[4](v)
                v = self.mods[-1](v)
                v = self.mods[-9](v)
                return v

        self.checkModule(MForward(), (torch.tensor(1),))

        class M2(M):
            def __init__(self):
                super(M2, self).__init__()

            def forward(self, v):
                return self.mods[-11].forward(v)

        with self.assertRaisesRegexWithHighlight(Exception, "Index -11 out of range", "self.mods[-11]"):
            torch.jit.script(M2())

        class M3(M):
            def __init__(self):
                super(M3, self).__init__()

            def forward(self, v):
                i = 3
                return self.mods[i].forward(v)

        with self.assertRaisesRegexWithHighlight(Exception, "Enumeration is supported", "self.mods[i]"):
            torch.jit.script(M3())

    def test_module_interface_special_methods(self):
        class CustomModuleInterface(torch.nn.Module):
            def __init__(self):
                super(CustomModuleInterface, self).__init__()

        class CustomModuleList(CustomModuleInterface, torch.nn.ModuleList):
            def __init__(self, modules=None):
                CustomModuleInterface.__init__(self)
                torch.nn.ModuleList.__init__(self, modules)

        class CustomSequential(CustomModuleInterface, torch.nn.Sequential):
            def __init__(self, modules=None):
                CustomModuleInterface.__init__(self)
                torch.nn.Sequential.__init__(self, modules)

        class CustomModuleDict(CustomModuleInterface, torch.nn.ModuleDict):
            def __init__(self, modules=None):
                CustomModuleInterface.__init__(self)
                torch.nn.ModuleDict.__init__(self, modules)

        class MyModule(torch.nn.Module):
            def __init__(self):
                super(MyModule, self).__init__()
                # work around aliasing issue for 'is' operator by scripting ReLU up front
                self.submod = torch.jit.script(torch.nn.ReLU())
                self.modulelist = CustomModuleList([self.submod])
                self.sequential = CustomSequential(self.submod)
                self.moduledict = CustomModuleDict({"submod": self.submod})

            def forward(self, inputs):
                assert self.modulelist[0] is self.submod, "__getitem__ failing for ModuleList"
                assert len(self.modulelist) == 1, "__len__ failing for ModuleList"
                for module in self.modulelist:
                    assert module is self.submod, "__iter__ failing for ModuleList"

                assert self.sequential[0] is self.submod, "__getitem__ failing for Sequential"
                assert len(self.sequential) == 1, "__len__ failing for Sequential"
                for module in self.sequential:
                    assert module is self.submod, "__iter__ failing for Sequential"

                assert self.moduledict["submod"] is self.submod, "__getitem__ failing for ModuleDict"
                assert len(self.moduledict) == 1, "__len__ failing for ModuleDict"

                # note: unable to index moduledict with a string variable currently
                i = 0
                for key in self.moduledict:
                    i += 1
                assert i == len(self.moduledict), "iteration failing for ModuleDict"

                assert "submod" in self.moduledict, "__contains__ fails for ModuleDict"

                for key in self.moduledict.keys():
                    assert key == "submod", "keys() fails for ModuleDict"

                for item in self.moduledict.items():
                    assert item[0] == "submod", "items() fails for ModuleDict"
                    assert item[1] is self.submod, "items() fails for ModuleDict"

                for value in self.moduledict.values():
                    assert value is self.submod, "values() fails for ModuleDict"

                return inputs

        m = MyModule()
        self.checkModule(m, [torch.randn(2, 2)])

    def test_special_method_with_override(self):
        class CustomModuleInterface(torch.nn.Module):
            def __init__(self):
                super(CustomModuleInterface, self).__init__()

        class CustomModuleList(CustomModuleInterface, torch.nn.ModuleList):
            def __init__(self, modules=None):
                CustomModuleInterface.__init__(self)
                torch.nn.ModuleList.__init__(self, modules)

            def __len__(self):
                # this is arbitrary, just to check that the overridden py __len__ from
                # CustomModuleList takes precedence over the automatically generated
                # __len__ added by the jit compiler
                return 2

        class MyModule(torch.nn.Module):
            def __init__(self):
                super(MyModule, self).__init__()
                # work around aliasing issue for 'is' operator by scripting ReLU up front
                self.submod = torch.jit.script(torch.nn.ReLU())
                self.modulelist = CustomModuleList([self.submod])

            def forward(self, inputs):
                assert len(self.modulelist) == 2, "__len__ failing for ModuleList"
                return inputs

        m = MyModule()
        self.checkModule(m, [torch.randn(2, 2)])
        mm = torch.jit.script(m)

    def test_moduledict_getitem(self):
        class MyModule(torch.nn.Module):
            def __init__(self):
                super(MyModule, self).__init__()
                self.relu = torch.jit.script(torch.nn.ReLU())
                self.tanh = torch.jit.script(torch.nn.Tanh())
                self.moduledict = torch.nn.ModuleDict({"relu": self.relu,
                                                       "tanh": self.tanh})

            def forward(self, input):
                assert self.moduledict['relu'] is self.relu
                assert self.moduledict['tanh'] is self.tanh
                return input

        m = MyModule()
        self.checkModule(m, [torch.randn(2, 2)])

    def test_moduledict_keyerror(self):
        class BadModule(torch.nn.Module):
            def __init__(self):
                super(BadModule, self).__init__()
                self.moduledict = torch.nn.ModuleDict({"foo": None,
                                                       "bar": None})

            def forward(self, input):
                assert self.moduledict['blah'] == "blah", "this is a keyerror"

        with self.assertRaisesRegexWithHighlight(RuntimeError, "Key Error, blah", "self.moduledict['blah'"):
            b = BadModule()
            torch.jit.script(b)

        class AnotherBadModule(torch.nn.Module):
            def __init__(self):
                super(AnotherBadModule, self).__init__()
                self.moduledict = torch.nn.ModuleDict({"foo": None,
                                                       "bar": None})

            def forward(self, input):
                idx = 'blah'
                assert self.moduledict[idx] == "blah", "this is a string literal error"

        with self.assertRaisesRegexWithHighlight(RuntimeError, "Unable to extract string literal index. "
                                                               "ModuleDict indexing is only supported with string literals.",
                                                               "self.moduledict[idx]"):
            b = AnotherBadModule()
            torch.jit.script(b)

    def test_normal_list_attribute_with_modules_error(self):
        """
        Test that an attempt to script a module with a regular list attribute
        containing other modules fails with a relevant error message.
        """
        class Mod(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.a = [torch.nn.ReLU(), torch.nn.ReLU()]

            def forward(self):
                return len(self.a)

        error_msg = "Could not infer type of list element: Cannot infer concrete type of torch.nn.Module"
        with self.assertRaisesRegexWithHighlight(RuntimeError, error_msg, "self.a"):
            torch.jit.script(Mod())

    def test_empty_dict_override_contains(self):
        class CustomModuleInterface(torch.nn.Module):
            def __init__(self):
                super(CustomModuleInterface, self).__init__()

        class CustomModuleDict(CustomModuleInterface, torch.nn.ModuleDict):
            def __init__(self, modules=None):
                CustomModuleInterface.__init__(self)
                torch.nn.ModuleDict.__init__(self, modules)

        class MyModule(torch.nn.Module):
            def __init__(self):
                super(MyModule, self).__init__()
                # work around aliasing issue for 'is' operator by scripting ReLU up front
                self.submod = torch.jit.script(torch.nn.ReLU())
                self.moduledict = CustomModuleDict()

            def forward(self, inputs):
                assert "submod" not in self.moduledict, "__contains__ fails for ModuleDict"
                return inputs

        m = MyModule()
        self.checkModule(m, [torch.randn(2, 2)])

    def test_typed_module_dict(self):
        """
        Test that a type annotation can be provided for a ModuleDict that allows
        non-static indexing.
        """
        @torch.jit.interface
        class ModuleInterface(torch.nn.Module):
            def forward(self, inp: Any) -> Any:
                pass

        class ImplementsInterface(torch.nn.Module):
            def forward(self, inp: Any) -> Any:
                if isinstance(inp, torch.Tensor):
                    return torch.max(inp, dim=0)

                return inp

        class DoesNotImplementInterface(torch.nn.Module):
            def forward(self, inp: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
                return torch.max(inp, dim=0)

        # Test annotation of submodule.
        class Mod(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.d = torch.nn.ModuleDict({"module": ImplementsInterface()})

            def forward(self, x: torch.Tensor, key: str) -> Any:
                value: ModuleInterface = self.d[key]
                return value.forward(x)

        m = Mod()
        self.checkModule(m, (torch.randn(2, 2), "module"))

        # Test annotation of self.
        class ModDict(torch.nn.ModuleDict):
            def __init__(self):
                super().__init__({"module": ImplementsInterface()})

            def forward(self, x: torch.Tensor, key: str) -> Any:
                submodule: ModuleInterface = self[key]
                return submodule.forward(x)

        m = ModDict()
        self.checkModule(m, (torch.randn(2, 2), "module"))

        # Test error message thrown when annotated attribute does not comply with the
        # annotation.
        class ModWithWrongAnnotation(torch.nn.ModuleDict):
            def __init__(self):
                super().__init__()
                self.d = torch.nn.ModuleDict({"module": DoesNotImplementInterface()})

            def forward(self, x: torch.Tensor, key: str) -> Any:
                submodule: ModuleInterface = self.d[key]
                return submodule.forward(x)

        with self.assertRaisesRegexWithHighlight(RuntimeError, r"Attribute module is not of annotated type", "self.d[key]"):
            torch.jit.script(ModWithWrongAnnotation())

    def test_typed_module_list(self):
        """
        Test that a type annotation can be provided for a ModuleList that allows
        non-static indexing.
        """
        @torch.jit.interface
        class ModuleInterface(torch.nn.Module):
            def forward(self, inp: Any) -> Any:
                pass

        class ImplementsInterface(torch.nn.Module):
            def forward(self, inp: Any) -> Any:
                if isinstance(inp, torch.Tensor):
                    return torch.max(inp, dim=0)

                return inp

        class DoesNotImplementInterface(torch.nn.Module):
            def forward(self, inp: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
                return torch.max(inp, dim=0)

        # Test annotation of submodule.
        class Mod(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.l = torch.nn.ModuleList([ImplementsInterface()])

            def forward(self, x: torch.Tensor, idx: int) -> Any:
                value: ModuleInterface = self.l[idx]
                return value.forward(x)

        m = Mod()
        self.checkModule(m, (torch.randn(2, 2), 0))

        # Test annotation of self.
        class ModList(torch.nn.ModuleList):
            def __init__(self):
                super().__init__([ImplementsInterface()])

            def forward(self, x: torch.Tensor, idx: int) -> Any:
                submodule: ModuleInterface = self[idx]
                return submodule.forward(x)

        m = ModList()
        self.checkModule(m, (torch.randn(2, 2), 0))

        # Test error message thrown when annotated attribute does not comply with the
        # annotation.
        class ModWithWrongAnnotation(torch.nn.ModuleList):
            def __init__(self):
                super().__init__()
                self.l = torch.nn.ModuleList([DoesNotImplementInterface()])

            def forward(self, x: torch.Tensor, idx: int) -> Any:
                submodule: ModuleInterface = self.l[idx]
                return submodule.forward(x)

        with self.assertRaisesRegexWithHighlight(RuntimeError, r"Attribute 0 is not of annotated type", "self.l[idx]"):
            torch.jit.script(ModWithWrongAnnotation())

    def test_module_properties(self):
        class ModuleWithProperties(torch.nn.Module):
            __jit_unused_properties__ = ["ignored_attr"]

            def __init__(self, a: int):
                super().__init__()
                self.a = a

            def forward(self, a: int, b: int):
                self.attr = a + b
                return self.attr

            @property
            def attr(self):
                return self.a

            @property
            def ignored_attr(self):
                return sum([self.a])

            @torch.jit.unused
            @property
            def ignored_attr_2(self):
                return sum([self.a])

            @ignored_attr_2.setter
            def ignored_attr_2(self, value):
                self.a = sum([self.a])

            @attr.setter
            def attr(self, a: int):
                if a > 0:
                    self.a = a
                else:
                    self.a = 0

        class ModuleWithNoSetter(torch.nn.Module):
            def __init__(self, a: int):
                super().__init__()
                self.a = a

            def forward(self, a: int, b: int):
                self.attr + a + b

            @property
            def attr(self):
                return self.a + 1

        self.checkModule(ModuleWithProperties(5), (5, 6,))
        self.checkModule(ModuleWithProperties(5), (-5, -6,))
        self.checkModule(ModuleWithNoSetter(5), (5, 6,))
        self.checkModule(ModuleWithNoSetter(5), (-5, -6,))

        mod = ModuleWithProperties(3)
        scripted_mod = torch.jit.script(mod)

        with self.assertRaisesRegex(AttributeError, "has no attribute"):
            scripted_mod.ignored_attr

    def test_module_inplace_construct(self):
        class M(nn.Module):
            def __init__(self, start: int):
                super().__init__()
                self.linear = nn.Linear(3, 3)
                self.attribute = start
                self.parameter = nn.Parameter(torch.tensor(3, dtype=torch.float))

            def method(self) -> int:
                return self.attribute

            @torch.jit.unused
            def unused_method(self):
                return self.attribute + self.attribute

            def forward(self, x):
                return self.linear(self.linear(x))


        class N(nn.Module):
            def __init__(self):
                super().__init__()
                self.linear = nn.Linear(4, 4)

            @torch.jit.ignore
            def ignored_method(self, x):
                return x

            def forward(self, x):
                return self.linear(x)

        m = torch.jit.script(M(3))
        n = torch.jit.script(N())

        n._reconstruct(m._c)

        inp = torch.rand((3))

        # Check that both modules produce the same output.
        with torch.no_grad():
            m_out = m(inp)
            n_out = n(inp)
            self.assertEqual(m_out, n_out)

        # Check that ignored method is still intact.
        self.assertEqual(inp, n.ignored_method(inp))

    def test_parameterlist_script_getitem(self):
        class MyModule(nn.Module):
            def __init__(self):
                super().__init__()
                self.module_list = nn.ModuleList([nn.Linear(1, 1) for _ in range(10)])
                self.parameter_list = nn.ParameterList([nn.Parameter(torch.zeros(1)) for _ in range(10)])

            def forward(self, x):
                self.module_list[0]
                self.parameter_list[0]
                return x

        self.checkModule(MyModule(), (torch.zeros(1)))

    def test_parameterlist_script_iter(self):
        class MyModule(nn.Module):
            def __init__(self):
                super().__init__()
                self.module_list = nn.ModuleList([nn.Linear(1, 1) for _ in range(10)])
                self.parameter_list = nn.ParameterList([nn.Parameter(torch.zeros(1)) for _ in range(10)])

            def forward(self, x):
                r = x
                for i, p in enumerate(self.parameter_list):
                    r = r + p + i
                return r

        self.checkModule(MyModule(), (torch.zeros(1),))

    def test_parameterdict_script_getitem(self):
        class MyModule(nn.Module):
            def __init__(self):
                super().__init__()
                self.parameter_dict = nn.ParameterDict({k: nn.Parameter(torch.zeros(1)) for k in ['a', 'b', 'c']})

            def forward(self, x):
                return self.parameter_dict['a'] * x + self.parameter_dict['b'] * self.parameter_dict['c']

        self.checkModule(MyModule(), (torch.ones(1),))