File: test_module_interface.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (686 lines) | stat: -rw-r--r-- 23,564 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
# Owner(s): ["oncall: jit"]

from typing import List, Any
import torch
import torch.nn as nn
import os
import sys
from torch import Tensor
from torch.testing._internal.jit_utils import JitTestCase, make_global

# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)

if __name__ == '__main__':
    raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
                       "\tpython test/test_jit.py TESTNAME\n\n"
                       "instead.")

class OrigModule(nn.Module):
    def __init__(self):
        super(OrigModule, self).__init__()

    def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
        return inp1 + inp2 + 1

    def two(self, input: Tensor) -> Tensor:
        return input + 2

    def forward(self, input: Tensor) -> Tensor:
        return input + self.one(input, input) + 1

class NewModule(nn.Module):
    def __init__(self):
        super(NewModule, self).__init__()

    def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
        return inp1 * inp2 + 1

    def forward(self, input: Tensor) -> Tensor:
        return self.one(input, input + 1)

class TestModuleInterface(JitTestCase):
    def test_not_submodule_interface_call(self):
        @torch.jit.interface
        class ModuleInterface(nn.Module):
            def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
                pass

        class TestNotModuleInterfaceCall(nn.Module):
            proxy_mod : ModuleInterface

            def __init__(self):
                super(TestNotModuleInterfaceCall, self).__init__()
                self.proxy_mod = OrigModule()

            def forward(self, input: Tensor) -> Tensor:
                return self.proxy_mod.two(input)

        with self.assertRaisesRegexWithHighlight(RuntimeError, "object has no attribute or method", "self.proxy_mod.two"):
            torch.jit.script(TestNotModuleInterfaceCall())

    def test_module_interface(self):
        @torch.jit.interface
        class OneTwoModule(nn.Module):
            def one(self, x: Tensor, y: Tensor) -> Tensor:
                pass

            def two(self, x: Tensor) -> Tensor:
                pass

            def forward(self, x: Tensor) -> Tensor:
                pass

        @torch.jit.interface
        class OneTwoClass(object):
            def one(self, x: Tensor, y: Tensor) -> Tensor:
                pass

            def two(self, x: Tensor) -> Tensor:
                pass

        class FooMod(nn.Module):
            def one(self, x: Tensor, y: Tensor) -> Tensor:
                return x + y

            def two(self, x: Tensor) -> Tensor:
                return 2 * x

            def forward(self, x: Tensor) -> Tensor:
                return self.one(self.two(x), x)

        class BarMod(nn.Module):
            def one(self, x: Tensor, y: Tensor) -> Tensor:
                return x * y

            def two(self, x: Tensor) -> Tensor:
                return 2 / x

            def forward(self, x: Tensor) -> Tensor:
                return self.two(self.one(x, x))

            @torch.jit.export
            def forward2(self, x: Tensor) -> Tensor:
                return self.two(self.one(x, x)) + 1

        make_global(OneTwoModule, OneTwoClass)

        def use_module_interface(mod_list: List[OneTwoModule], x: torch.Tensor):
            return mod_list[0].forward(x) + mod_list[1].forward(x)

        def use_class_interface(mod_list: List[OneTwoClass], x: Tensor) -> Tensor:
            return mod_list[0].two(x) + mod_list[1].one(x, x)

        scripted_foo_mod = torch.jit.script(FooMod())
        scripted_bar_mod = torch.jit.script(BarMod())
        self.checkScript(use_module_interface,
                         ([scripted_foo_mod, scripted_bar_mod], torch.rand(3, 4),))
        self.checkScript(use_class_interface,
                         ([scripted_foo_mod, scripted_bar_mod], torch.rand(3, 4),))

        def call_module_interface_on_other_method(mod_interface: OneTwoModule, x: Tensor) -> Tensor:
            return mod_interface.forward2(x)

        # ensure error out when we call the module on the method other than the interface specified.
        with self.assertRaisesRegexWithHighlight(RuntimeError, "object has no attribute or method", "mod_interface.forward2"):
            self.checkScript(call_module_interface_on_other_method, (scripted_bar_mod, torch.rand(3, 4),))

    def test_module_doc_string(self):
        @torch.jit.interface
        class TestInterface(nn.Module):
            def one(self, inp1, inp2):
                # type: (Tensor, Tensor) -> Tensor
                pass

            def forward(self, input):
                # type: (Tensor) -> Tensor
                r"""stuff 1"""
                r"""stuff 2"""
                pass
                r"""stuff 3"""

        class TestModule(nn.Module):
            proxy_mod : TestInterface

            def __init__(self):
                super(TestModule, self).__init__()
                self.proxy_mod = OrigModule()

            def forward(self, input):
                # type: (Tensor) -> Tensor
                return self.proxy_mod.forward(input)

        input = torch.randn(3, 4)
        self.checkModule(TestModule(), (input,))

    def test_module_interface_subtype(self):
        @torch.jit.interface
        class OneTwoModule(nn.Module):
            def one(self, x: Tensor, y: Tensor) -> Tensor:
                pass

            def two(self, x: Tensor) -> Tensor:
                pass

            def forward(self, x: Tensor) -> Tensor:
                pass

        make_global(OneTwoModule)

        @torch.jit.script
        def as_module_interface(x: OneTwoModule) -> OneTwoModule:
            return x

        @torch.jit.script
        class Foo(object):
            def one(self, x: Tensor, y: Tensor) -> Tensor:
                return x + y

            def two(self, x: Tensor) -> Tensor:
                return 2 * x

            def forward(self, x: Tensor) -> Tensor:
                return self.one(self.two(x), x)

        # check class object is not a subtype of module interface
        with self.assertRaisesRegex(RuntimeError, "ScriptModule class can be subtype of module interface"):
            as_module_interface(Foo())

        class WrongMod(nn.Module):
            def two(self, x: int) -> int:
                return 2 * x

            def forward(self, x: Tensor) -> Tensor:
                return x + torch.randn(3, self.two(3))

        scripted_wrong_mod = torch.jit.script(WrongMod())

        # wrong module that is not compatible with module interface
        with self.assertRaisesRegex(RuntimeError, "is not compatible with interface"):
            as_module_interface(scripted_wrong_mod)

        # Check that interface implementations can be contravariant in argument types and covariant in return type.
        @torch.jit.interface
        class TensorToAny(nn.Module):
            def forward(self, input: torch.Tensor) -> Any:
                pass

        make_global(TensorToAny)

        @torch.jit.script
        def as_tensor_to_any(x: TensorToAny) -> TensorToAny:
            return x

        @torch.jit.interface
        class AnyToAny(nn.Module):
            def forward(self, input: Any) -> Any:
                pass

        make_global(AnyToAny)

        @torch.jit.script
        def as_any_to_any(x: AnyToAny) -> AnyToAny:
            return x

        class TensorToAnyImplA(nn.Module):
            def forward(self, input: Any) -> Any:
                return input

        class TensorToAnyImplB(nn.Module):
            def forward(self, input: Any) -> torch.Tensor:
                return torch.tensor([1])

        class AnyToAnyImpl(nn.Module):
            def forward(self, input: Any) -> torch.Tensor:
                return torch.tensor([1])

        as_tensor_to_any(torch.jit.script(TensorToAnyImplA()))
        as_tensor_to_any(torch.jit.script(TensorToAnyImplB()))
        as_any_to_any(torch.jit.script(AnyToAnyImpl()))


    def test_module_interface_inheritance(self):
        with self.assertRaisesRegex(RuntimeError, "does not support inheritance yet. Please directly"):
            @torch.jit.interface
            class InheritMod(nn.ReLU):
                def three(self, x: Tensor) -> Tensor:
                    return 3 * x

    def test_module_swap(self):
        @torch.jit.interface
        class ModuleInterface(nn.Module):
            def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
                pass

            def forward(self, input: Tensor) -> Tensor:
                pass

        class TestModule(nn.Module):
            proxy_mod : ModuleInterface

            def __init__(self):
                super(TestModule, self).__init__()
                self.proxy_mod = OrigModule()

            def forward(self, input: Tensor) -> Tensor:
                return self.proxy_mod.forward(input)

        scripted_mod = torch.jit.script(TestModule())
        input = torch.randn(3, 4)
        self.assertEqual(scripted_mod(input), 3 * input + 2)

        # module swap with module that have the same interface
        scripted_mod.proxy_mod = torch.jit.script(NewModule())
        self.assertEqual(scripted_mod(input), input * (input + 1) + 1)

        # module swap with non-scripted module should throw error
        with self.assertRaisesRegex(RuntimeError, "a ScriptModule with non-scripted module"):
            scripted_mod.proxy_mod = NewModule()

    def test_module_swap_wrong_module(self):
        @torch.jit.interface
        class ModuleInterface(nn.Module):
            def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
                pass

            def forward(self, input: Tensor) -> Tensor:
                pass

        class NewModuleWrong(nn.Module):
            def __init__(self):
                super(NewModuleWrong, self).__init__()

            def forward(self, input: int) -> int:
                return input + 1

        class TestModule(nn.Module):
            proxy_mod : ModuleInterface

            def __init__(self):
                super(TestModule, self).__init__()
                self.proxy_mod = OrigModule()

            def forward(self, input: Tensor) -> Tensor:
                return self.proxy_mod.forward(input)

        scripted_mod = torch.jit.script(TestModule())
        # module swap with in-compatible interface
        with self.assertRaisesRegex(RuntimeError, "is not compatible with interface"):
            scripted_mod.proxy_mod = torch.jit.script(NewModuleWrong())

    def test_module_swap_no_lazy_compile(self):
        @torch.jit.interface
        class ModuleInterface(nn.Module):
            def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
                pass

            def forward(self, input: Tensor) -> Tensor:
                pass

        class TestModule(nn.Module):
            proxy_mod : ModuleInterface

            def __init__(self):
                super(TestModule, self).__init__()
                self.proxy_mod = OrigModule()

            def forward(self, input: Tensor) -> Tensor:
                return self.proxy_mod.forward(input)

        class NewModuleMethodNotLazyCompile(nn.Module):
            def __init__(self):
                super(NewModuleMethodNotLazyCompile, self).__init__()

            def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
                return inp1 * inp2 + 1

            def forward(self, input: Tensor) -> Tensor:
                return input + 1

        scripted_mod = torch.jit.script(TestModule())
        # module swap with module that have the same interface, but the method not get
        # lazily compiled from forward, user need to export it explicitly for swap to work
        with self.assertRaisesRegex(RuntimeError, "is not compatible with interface"):
            scripted_mod.proxy_mod = torch.jit.script(NewModuleMethodNotLazyCompile())

        class NewModuleMethodManualExport(nn.Module):
            def __init__(self):
                super(NewModuleMethodManualExport, self).__init__()

            @torch.jit.export
            def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
                return inp1 * inp2 + 1

            def forward(self, input: Tensor) -> Tensor:
                return input + 1

        scripted_mod.proxy_mod = torch.jit.script(NewModuleMethodManualExport())
        input = torch.randn(3, 4)
        self.assertEqual(scripted_mod(input), input + 1)

    def test_module_swap_no_module_interface(self):
        # test module swapping with no module interface
        class TestNoModuleInterface(nn.Module):
            def __init__(self):
                super(TestNoModuleInterface, self).__init__()
                self.proxy_mod = OrigModule()

            def forward(self, input: Tensor) -> Tensor:
                return self.proxy_mod(input)

        scripted_no_module_interface = torch.jit.script(TestNoModuleInterface())
        # proxy mod is swapped with the new ScriptModule that share the same JIT type, should succeed.
        scripted_no_module_interface.proxy_mod = torch.jit.script(OrigModule())
        # proxy_mod is neither a module interface or have the same JIT type, should fail
        with self.assertRaisesRegex(RuntimeError,
                                    r"Expected a value of type '__torch__.jit.test_module_interface.OrigModule \(.*\)' " +
                                    r"for field 'proxy_mod', but found '__torch__.jit.test_module_interface.NewModule \(.*\)'"):
            scripted_no_module_interface.proxy_mod = torch.jit.script(NewModule())

    def test_script_module_as_interface_swap(self):
        @torch.jit.interface
        class ModuleInterface(nn.Module):
            def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
                pass

            def forward(self, input: Tensor) -> Tensor:
                pass

        class OrigScriptModule(torch.jit.ScriptModule):
            def __init__(self):
                super(OrigScriptModule, self).__init__()

            @torch.jit.script_method
            def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
                return inp1 + inp2 + 1

            @torch.jit.script_method
            def forward(self, input: Tensor) -> Tensor:
                return input + self.one(input, input) + 1

        class NewScriptModule(torch.jit.ScriptModule):
            def __init__(self):
                super(NewScriptModule, self).__init__()

            @torch.jit.script_method
            def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
                return inp1 * inp2 + 1

            @torch.jit.script_method
            def forward(self, input: Tensor) -> Tensor:
                return self.one(input, input + 1)

        class TestNNModuleWithScriptModule(nn.Module):
            proxy_mod : ModuleInterface

            def __init__(self):
                super(TestNNModuleWithScriptModule, self).__init__()
                self.proxy_mod = OrigScriptModule()

            def forward(self, input: Tensor) -> Tensor:
                return self.proxy_mod.forward(input)

        input = torch.randn(3, 4)
        scripted_mod = torch.jit.script(TestNNModuleWithScriptModule())
        self.assertEqual(scripted_mod(input), 3 * input + 2)

        scripted_mod.proxy_mod = NewScriptModule()
        self.assertEqual(scripted_mod(input), input * (input + 1) + 1)

    # The call to forward of proxy_mod cannot be inlined. Making sure
    # Freezing is throwing an error for now.
    def test_freeze_module_with_interface(self):
        class SubModule(torch.nn.Module):
            def __init__(self):
                super(SubModule, self).__init__()
                self.b = 20

            def forward(self, x):
                return self.b

        class OrigMod(torch.nn.Module):
            def __init__(self):
                super(OrigMod, self).__init__()
                self.a = 0

            def forward(self, x):
                return self.a

        @torch.jit.interface
        class ModInterface(torch.nn.Module):
            def forward(self, x: Tensor) -> int:
                pass

        class TestModule(torch.nn.Module):
            proxy_mod : ModInterface

            def __init__(self):
                super(TestModule, self).__init__()
                self.proxy_mod = OrigMod()
                self.sub = SubModule()  # folded

            def forward(self, x):
                return self.proxy_mod(x) + self.sub(x)

        m = torch.jit.script(TestModule())
        m.eval()
        mf = torch._C._freeze_module(m._c)
        # Assume interface has no aliasing
        mf = torch._C._freeze_module(m._c, freezeInterfaces=True)
        input = torch.tensor([1])
        out_s = m.forward(input)
        out_f = mf.forward(input)
        self.assertEqual(out_s, out_f)

    def test_freeze_module_with_setattr_in_interface(self):
        class SubModule(torch.nn.Module):
            def __init__(self):
                super(SubModule, self).__init__()
                self.b = 20

            def forward(self, x):
                self.b += 2
                return self.b

            @torch.jit.export
            def getb(self, x):
                return self.b

        class OrigMod(torch.nn.Module):
            def __init__(self):
                super(OrigMod, self).__init__()
                self.a = 0

            def forward(self, x):
                return self.a

        @torch.jit.interface
        class ModInterface(torch.nn.Module):
            def forward(self, x: Tensor) -> int:
                pass

        class TestModule(torch.nn.Module):
            proxy_mod : ModInterface

            def __init__(self):
                super(TestModule, self).__init__()
                self.proxy_mod = OrigMod()
                self.sub = SubModule()

            def forward(self, x):
                return self.proxy_mod(x) + self.sub.getb(x)

        m = torch.jit.script(TestModule())
        m.proxy_mod = m.sub
        m.eval()
        with self.assertRaisesRegex(RuntimeError, "failed to freeze interface attribute 'proxy_mod'"):
            mf = torch._C._freeze_module(m._c, freezeInterfaces=True)

    def test_freeze_module_with_inplace_mutation_in_interface(self):
        class SubModule(torch.nn.Module):
            def __init__(self):
                super(SubModule, self).__init__()
                self.b = torch.tensor([1.5])

            def forward(self, x):
                self.b[0] += 2
                return self.b

            @torch.jit.export
            def getb(self, x):
                return self.b

        class OrigMod(torch.nn.Module):
            def __init__(self):
                super(OrigMod, self).__init__()
                self.a = torch.tensor([0.5])

            def forward(self, x):
                return self.a

        @torch.jit.interface
        class ModInterface(torch.nn.Module):
            def forward(self, x: Tensor) -> Tensor:
                pass

        class TestModule(torch.nn.Module):
            proxy_mod : ModInterface

            def __init__(self):
                super(TestModule, self).__init__()
                self.proxy_mod = OrigMod()
                self.sub = SubModule()

            def forward(self, x):
                y = self.proxy_mod(x)
                z = self.sub.getb(x)
                return y[0] + z[0]

        m = torch.jit.script(TestModule())
        m.proxy_mod = m.sub
        m.sub.b = m.proxy_mod.b
        m.eval()
        with self.assertRaisesRegex(RuntimeError, "failed to freeze interface attribute 'proxy_mod'"):
            mf = torch._C._freeze_module(m._c, freezeInterfaces=True)

    def test_freeze_module_with_mutated_interface(self):
        class SubModule(torch.nn.Module):
            def __init__(self):
                super(SubModule, self).__init__()
                self.b = torch.tensor([1.5])

            def forward(self, x):
                return self.b

            @torch.jit.export
            def getb(self, x):
                return self.b

        class OrigMod(torch.nn.Module):
            def __init__(self):
                super(OrigMod, self).__init__()
                self.a = torch.tensor([0.5])

            def forward(self, x):
                return self.a

        @torch.jit.interface
        class ModInterface(torch.nn.Module):
            def forward(self, x: Tensor) -> Tensor:
                pass

        class TestModule(torch.nn.Module):
            proxy_mod : ModInterface

            def __init__(self):
                super(TestModule, self).__init__()
                self.proxy_mod = OrigMod()
                self.sub = SubModule()

            def forward(self, x):
                self.proxy_mod = self.sub
                y = self.proxy_mod(x)
                z = self.sub.getb(x)
                return y[0] + z[0]

        m = torch.jit.script(TestModule())
        m.eval()
        with self.assertRaisesRegex(RuntimeError, "failed to freeze interface attribute 'proxy_mod'"):
            mf = torch._C._freeze_module(m._c, freezeInterfaces=True)

    def test_freeze_module_with_interface_and_fork(self):
        class SubModule(torch.nn.Module):
            def __init__(self):
                super(SubModule, self).__init__()
                self.b = torch.tensor([1.5])

            def forward(self, x):
                self.b[0] += 3.2
                return self.b

        class OrigMod(torch.nn.Module):
            def __init__(self):
                super(OrigMod, self).__init__()
                self.a = torch.tensor([0.5])

            def forward(self, x):
                return self.a

        @torch.jit.interface
        class ModInterface(torch.nn.Module):
            def forward(self, x: Tensor) -> Tensor:
                pass

        class TestModule(torch.nn.Module):
            proxy_mod : ModInterface

            def __init__(self):
                super(TestModule, self).__init__()
                self.proxy_mod = OrigMod()
                self.sub = SubModule()

            def forward(self, x):
                y = self.proxy_mod(x)
                z = self.sub(x)
                return y + z

        class MainModule(torch.nn.Module):
            def __init__(self):
                super(MainModule, self).__init__()
                self.test = TestModule()

            def forward(self, x):
                fut = torch.jit._fork(self.test.forward, x)
                y = self.test(x)
                z = torch.jit._wait(fut)
                return y + z

        m = torch.jit.script(MainModule())
        m.eval()
        mf = torch._C._freeze_module(m._c, freezeInterfaces=True)

    def test_module_apis_interface(self):
        @torch.jit.interface
        class ModuleInterface(nn.Module):
            def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
                pass

        class TestModule(nn.Module):
            proxy_mod : ModuleInterface

            def __init__(self):
                super(TestModule, self).__init__()
                self.proxy_mod = OrigModule()

            def forward(self, input):
                return input * 2

            @torch.jit.export
            def method(self, input):
                for module in self.modules():
                    input = module(input)
                return input

        with self.assertRaisesRegex(Exception, "Could not compile"):
            scripted_mod = torch.jit.script(TestModule())