1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
|
# Owner(s): ["oncall: jit"]
from typing import List, Any
import torch
import torch.nn as nn
import os
import sys
from torch import Tensor
from torch.testing._internal.jit_utils import JitTestCase, make_global
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
if __name__ == '__main__':
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead.")
class OrigModule(nn.Module):
def __init__(self):
super(OrigModule, self).__init__()
def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
return inp1 + inp2 + 1
def two(self, input: Tensor) -> Tensor:
return input + 2
def forward(self, input: Tensor) -> Tensor:
return input + self.one(input, input) + 1
class NewModule(nn.Module):
def __init__(self):
super(NewModule, self).__init__()
def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
return inp1 * inp2 + 1
def forward(self, input: Tensor) -> Tensor:
return self.one(input, input + 1)
class TestModuleInterface(JitTestCase):
def test_not_submodule_interface_call(self):
@torch.jit.interface
class ModuleInterface(nn.Module):
def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
pass
class TestNotModuleInterfaceCall(nn.Module):
proxy_mod : ModuleInterface
def __init__(self):
super(TestNotModuleInterfaceCall, self).__init__()
self.proxy_mod = OrigModule()
def forward(self, input: Tensor) -> Tensor:
return self.proxy_mod.two(input)
with self.assertRaisesRegexWithHighlight(RuntimeError, "object has no attribute or method", "self.proxy_mod.two"):
torch.jit.script(TestNotModuleInterfaceCall())
def test_module_interface(self):
@torch.jit.interface
class OneTwoModule(nn.Module):
def one(self, x: Tensor, y: Tensor) -> Tensor:
pass
def two(self, x: Tensor) -> Tensor:
pass
def forward(self, x: Tensor) -> Tensor:
pass
@torch.jit.interface
class OneTwoClass(object):
def one(self, x: Tensor, y: Tensor) -> Tensor:
pass
def two(self, x: Tensor) -> Tensor:
pass
class FooMod(nn.Module):
def one(self, x: Tensor, y: Tensor) -> Tensor:
return x + y
def two(self, x: Tensor) -> Tensor:
return 2 * x
def forward(self, x: Tensor) -> Tensor:
return self.one(self.two(x), x)
class BarMod(nn.Module):
def one(self, x: Tensor, y: Tensor) -> Tensor:
return x * y
def two(self, x: Tensor) -> Tensor:
return 2 / x
def forward(self, x: Tensor) -> Tensor:
return self.two(self.one(x, x))
@torch.jit.export
def forward2(self, x: Tensor) -> Tensor:
return self.two(self.one(x, x)) + 1
make_global(OneTwoModule, OneTwoClass)
def use_module_interface(mod_list: List[OneTwoModule], x: torch.Tensor):
return mod_list[0].forward(x) + mod_list[1].forward(x)
def use_class_interface(mod_list: List[OneTwoClass], x: Tensor) -> Tensor:
return mod_list[0].two(x) + mod_list[1].one(x, x)
scripted_foo_mod = torch.jit.script(FooMod())
scripted_bar_mod = torch.jit.script(BarMod())
self.checkScript(use_module_interface,
([scripted_foo_mod, scripted_bar_mod], torch.rand(3, 4),))
self.checkScript(use_class_interface,
([scripted_foo_mod, scripted_bar_mod], torch.rand(3, 4),))
def call_module_interface_on_other_method(mod_interface: OneTwoModule, x: Tensor) -> Tensor:
return mod_interface.forward2(x)
# ensure error out when we call the module on the method other than the interface specified.
with self.assertRaisesRegexWithHighlight(RuntimeError, "object has no attribute or method", "mod_interface.forward2"):
self.checkScript(call_module_interface_on_other_method, (scripted_bar_mod, torch.rand(3, 4),))
def test_module_doc_string(self):
@torch.jit.interface
class TestInterface(nn.Module):
def one(self, inp1, inp2):
# type: (Tensor, Tensor) -> Tensor
pass
def forward(self, input):
# type: (Tensor) -> Tensor
r"""stuff 1"""
r"""stuff 2"""
pass
r"""stuff 3"""
class TestModule(nn.Module):
proxy_mod : TestInterface
def __init__(self):
super(TestModule, self).__init__()
self.proxy_mod = OrigModule()
def forward(self, input):
# type: (Tensor) -> Tensor
return self.proxy_mod.forward(input)
input = torch.randn(3, 4)
self.checkModule(TestModule(), (input,))
def test_module_interface_subtype(self):
@torch.jit.interface
class OneTwoModule(nn.Module):
def one(self, x: Tensor, y: Tensor) -> Tensor:
pass
def two(self, x: Tensor) -> Tensor:
pass
def forward(self, x: Tensor) -> Tensor:
pass
make_global(OneTwoModule)
@torch.jit.script
def as_module_interface(x: OneTwoModule) -> OneTwoModule:
return x
@torch.jit.script
class Foo(object):
def one(self, x: Tensor, y: Tensor) -> Tensor:
return x + y
def two(self, x: Tensor) -> Tensor:
return 2 * x
def forward(self, x: Tensor) -> Tensor:
return self.one(self.two(x), x)
# check class object is not a subtype of module interface
with self.assertRaisesRegex(RuntimeError, "ScriptModule class can be subtype of module interface"):
as_module_interface(Foo())
class WrongMod(nn.Module):
def two(self, x: int) -> int:
return 2 * x
def forward(self, x: Tensor) -> Tensor:
return x + torch.randn(3, self.two(3))
scripted_wrong_mod = torch.jit.script(WrongMod())
# wrong module that is not compatible with module interface
with self.assertRaisesRegex(RuntimeError, "is not compatible with interface"):
as_module_interface(scripted_wrong_mod)
# Check that interface implementations can be contravariant in argument types and covariant in return type.
@torch.jit.interface
class TensorToAny(nn.Module):
def forward(self, input: torch.Tensor) -> Any:
pass
make_global(TensorToAny)
@torch.jit.script
def as_tensor_to_any(x: TensorToAny) -> TensorToAny:
return x
@torch.jit.interface
class AnyToAny(nn.Module):
def forward(self, input: Any) -> Any:
pass
make_global(AnyToAny)
@torch.jit.script
def as_any_to_any(x: AnyToAny) -> AnyToAny:
return x
class TensorToAnyImplA(nn.Module):
def forward(self, input: Any) -> Any:
return input
class TensorToAnyImplB(nn.Module):
def forward(self, input: Any) -> torch.Tensor:
return torch.tensor([1])
class AnyToAnyImpl(nn.Module):
def forward(self, input: Any) -> torch.Tensor:
return torch.tensor([1])
as_tensor_to_any(torch.jit.script(TensorToAnyImplA()))
as_tensor_to_any(torch.jit.script(TensorToAnyImplB()))
as_any_to_any(torch.jit.script(AnyToAnyImpl()))
def test_module_interface_inheritance(self):
with self.assertRaisesRegex(RuntimeError, "does not support inheritance yet. Please directly"):
@torch.jit.interface
class InheritMod(nn.ReLU):
def three(self, x: Tensor) -> Tensor:
return 3 * x
def test_module_swap(self):
@torch.jit.interface
class ModuleInterface(nn.Module):
def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
pass
def forward(self, input: Tensor) -> Tensor:
pass
class TestModule(nn.Module):
proxy_mod : ModuleInterface
def __init__(self):
super(TestModule, self).__init__()
self.proxy_mod = OrigModule()
def forward(self, input: Tensor) -> Tensor:
return self.proxy_mod.forward(input)
scripted_mod = torch.jit.script(TestModule())
input = torch.randn(3, 4)
self.assertEqual(scripted_mod(input), 3 * input + 2)
# module swap with module that have the same interface
scripted_mod.proxy_mod = torch.jit.script(NewModule())
self.assertEqual(scripted_mod(input), input * (input + 1) + 1)
# module swap with non-scripted module should throw error
with self.assertRaisesRegex(RuntimeError, "a ScriptModule with non-scripted module"):
scripted_mod.proxy_mod = NewModule()
def test_module_swap_wrong_module(self):
@torch.jit.interface
class ModuleInterface(nn.Module):
def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
pass
def forward(self, input: Tensor) -> Tensor:
pass
class NewModuleWrong(nn.Module):
def __init__(self):
super(NewModuleWrong, self).__init__()
def forward(self, input: int) -> int:
return input + 1
class TestModule(nn.Module):
proxy_mod : ModuleInterface
def __init__(self):
super(TestModule, self).__init__()
self.proxy_mod = OrigModule()
def forward(self, input: Tensor) -> Tensor:
return self.proxy_mod.forward(input)
scripted_mod = torch.jit.script(TestModule())
# module swap with in-compatible interface
with self.assertRaisesRegex(RuntimeError, "is not compatible with interface"):
scripted_mod.proxy_mod = torch.jit.script(NewModuleWrong())
def test_module_swap_no_lazy_compile(self):
@torch.jit.interface
class ModuleInterface(nn.Module):
def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
pass
def forward(self, input: Tensor) -> Tensor:
pass
class TestModule(nn.Module):
proxy_mod : ModuleInterface
def __init__(self):
super(TestModule, self).__init__()
self.proxy_mod = OrigModule()
def forward(self, input: Tensor) -> Tensor:
return self.proxy_mod.forward(input)
class NewModuleMethodNotLazyCompile(nn.Module):
def __init__(self):
super(NewModuleMethodNotLazyCompile, self).__init__()
def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
return inp1 * inp2 + 1
def forward(self, input: Tensor) -> Tensor:
return input + 1
scripted_mod = torch.jit.script(TestModule())
# module swap with module that have the same interface, but the method not get
# lazily compiled from forward, user need to export it explicitly for swap to work
with self.assertRaisesRegex(RuntimeError, "is not compatible with interface"):
scripted_mod.proxy_mod = torch.jit.script(NewModuleMethodNotLazyCompile())
class NewModuleMethodManualExport(nn.Module):
def __init__(self):
super(NewModuleMethodManualExport, self).__init__()
@torch.jit.export
def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
return inp1 * inp2 + 1
def forward(self, input: Tensor) -> Tensor:
return input + 1
scripted_mod.proxy_mod = torch.jit.script(NewModuleMethodManualExport())
input = torch.randn(3, 4)
self.assertEqual(scripted_mod(input), input + 1)
def test_module_swap_no_module_interface(self):
# test module swapping with no module interface
class TestNoModuleInterface(nn.Module):
def __init__(self):
super(TestNoModuleInterface, self).__init__()
self.proxy_mod = OrigModule()
def forward(self, input: Tensor) -> Tensor:
return self.proxy_mod(input)
scripted_no_module_interface = torch.jit.script(TestNoModuleInterface())
# proxy mod is swapped with the new ScriptModule that share the same JIT type, should succeed.
scripted_no_module_interface.proxy_mod = torch.jit.script(OrigModule())
# proxy_mod is neither a module interface or have the same JIT type, should fail
with self.assertRaisesRegex(RuntimeError,
r"Expected a value of type '__torch__.jit.test_module_interface.OrigModule \(.*\)' " +
r"for field 'proxy_mod', but found '__torch__.jit.test_module_interface.NewModule \(.*\)'"):
scripted_no_module_interface.proxy_mod = torch.jit.script(NewModule())
def test_script_module_as_interface_swap(self):
@torch.jit.interface
class ModuleInterface(nn.Module):
def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
pass
def forward(self, input: Tensor) -> Tensor:
pass
class OrigScriptModule(torch.jit.ScriptModule):
def __init__(self):
super(OrigScriptModule, self).__init__()
@torch.jit.script_method
def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
return inp1 + inp2 + 1
@torch.jit.script_method
def forward(self, input: Tensor) -> Tensor:
return input + self.one(input, input) + 1
class NewScriptModule(torch.jit.ScriptModule):
def __init__(self):
super(NewScriptModule, self).__init__()
@torch.jit.script_method
def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
return inp1 * inp2 + 1
@torch.jit.script_method
def forward(self, input: Tensor) -> Tensor:
return self.one(input, input + 1)
class TestNNModuleWithScriptModule(nn.Module):
proxy_mod : ModuleInterface
def __init__(self):
super(TestNNModuleWithScriptModule, self).__init__()
self.proxy_mod = OrigScriptModule()
def forward(self, input: Tensor) -> Tensor:
return self.proxy_mod.forward(input)
input = torch.randn(3, 4)
scripted_mod = torch.jit.script(TestNNModuleWithScriptModule())
self.assertEqual(scripted_mod(input), 3 * input + 2)
scripted_mod.proxy_mod = NewScriptModule()
self.assertEqual(scripted_mod(input), input * (input + 1) + 1)
# The call to forward of proxy_mod cannot be inlined. Making sure
# Freezing is throwing an error for now.
def test_freeze_module_with_interface(self):
class SubModule(torch.nn.Module):
def __init__(self):
super(SubModule, self).__init__()
self.b = 20
def forward(self, x):
return self.b
class OrigMod(torch.nn.Module):
def __init__(self):
super(OrigMod, self).__init__()
self.a = 0
def forward(self, x):
return self.a
@torch.jit.interface
class ModInterface(torch.nn.Module):
def forward(self, x: Tensor) -> int:
pass
class TestModule(torch.nn.Module):
proxy_mod : ModInterface
def __init__(self):
super(TestModule, self).__init__()
self.proxy_mod = OrigMod()
self.sub = SubModule() # folded
def forward(self, x):
return self.proxy_mod(x) + self.sub(x)
m = torch.jit.script(TestModule())
m.eval()
mf = torch._C._freeze_module(m._c)
# Assume interface has no aliasing
mf = torch._C._freeze_module(m._c, freezeInterfaces=True)
input = torch.tensor([1])
out_s = m.forward(input)
out_f = mf.forward(input)
self.assertEqual(out_s, out_f)
def test_freeze_module_with_setattr_in_interface(self):
class SubModule(torch.nn.Module):
def __init__(self):
super(SubModule, self).__init__()
self.b = 20
def forward(self, x):
self.b += 2
return self.b
@torch.jit.export
def getb(self, x):
return self.b
class OrigMod(torch.nn.Module):
def __init__(self):
super(OrigMod, self).__init__()
self.a = 0
def forward(self, x):
return self.a
@torch.jit.interface
class ModInterface(torch.nn.Module):
def forward(self, x: Tensor) -> int:
pass
class TestModule(torch.nn.Module):
proxy_mod : ModInterface
def __init__(self):
super(TestModule, self).__init__()
self.proxy_mod = OrigMod()
self.sub = SubModule()
def forward(self, x):
return self.proxy_mod(x) + self.sub.getb(x)
m = torch.jit.script(TestModule())
m.proxy_mod = m.sub
m.eval()
with self.assertRaisesRegex(RuntimeError, "failed to freeze interface attribute 'proxy_mod'"):
mf = torch._C._freeze_module(m._c, freezeInterfaces=True)
def test_freeze_module_with_inplace_mutation_in_interface(self):
class SubModule(torch.nn.Module):
def __init__(self):
super(SubModule, self).__init__()
self.b = torch.tensor([1.5])
def forward(self, x):
self.b[0] += 2
return self.b
@torch.jit.export
def getb(self, x):
return self.b
class OrigMod(torch.nn.Module):
def __init__(self):
super(OrigMod, self).__init__()
self.a = torch.tensor([0.5])
def forward(self, x):
return self.a
@torch.jit.interface
class ModInterface(torch.nn.Module):
def forward(self, x: Tensor) -> Tensor:
pass
class TestModule(torch.nn.Module):
proxy_mod : ModInterface
def __init__(self):
super(TestModule, self).__init__()
self.proxy_mod = OrigMod()
self.sub = SubModule()
def forward(self, x):
y = self.proxy_mod(x)
z = self.sub.getb(x)
return y[0] + z[0]
m = torch.jit.script(TestModule())
m.proxy_mod = m.sub
m.sub.b = m.proxy_mod.b
m.eval()
with self.assertRaisesRegex(RuntimeError, "failed to freeze interface attribute 'proxy_mod'"):
mf = torch._C._freeze_module(m._c, freezeInterfaces=True)
def test_freeze_module_with_mutated_interface(self):
class SubModule(torch.nn.Module):
def __init__(self):
super(SubModule, self).__init__()
self.b = torch.tensor([1.5])
def forward(self, x):
return self.b
@torch.jit.export
def getb(self, x):
return self.b
class OrigMod(torch.nn.Module):
def __init__(self):
super(OrigMod, self).__init__()
self.a = torch.tensor([0.5])
def forward(self, x):
return self.a
@torch.jit.interface
class ModInterface(torch.nn.Module):
def forward(self, x: Tensor) -> Tensor:
pass
class TestModule(torch.nn.Module):
proxy_mod : ModInterface
def __init__(self):
super(TestModule, self).__init__()
self.proxy_mod = OrigMod()
self.sub = SubModule()
def forward(self, x):
self.proxy_mod = self.sub
y = self.proxy_mod(x)
z = self.sub.getb(x)
return y[0] + z[0]
m = torch.jit.script(TestModule())
m.eval()
with self.assertRaisesRegex(RuntimeError, "failed to freeze interface attribute 'proxy_mod'"):
mf = torch._C._freeze_module(m._c, freezeInterfaces=True)
def test_freeze_module_with_interface_and_fork(self):
class SubModule(torch.nn.Module):
def __init__(self):
super(SubModule, self).__init__()
self.b = torch.tensor([1.5])
def forward(self, x):
self.b[0] += 3.2
return self.b
class OrigMod(torch.nn.Module):
def __init__(self):
super(OrigMod, self).__init__()
self.a = torch.tensor([0.5])
def forward(self, x):
return self.a
@torch.jit.interface
class ModInterface(torch.nn.Module):
def forward(self, x: Tensor) -> Tensor:
pass
class TestModule(torch.nn.Module):
proxy_mod : ModInterface
def __init__(self):
super(TestModule, self).__init__()
self.proxy_mod = OrigMod()
self.sub = SubModule()
def forward(self, x):
y = self.proxy_mod(x)
z = self.sub(x)
return y + z
class MainModule(torch.nn.Module):
def __init__(self):
super(MainModule, self).__init__()
self.test = TestModule()
def forward(self, x):
fut = torch.jit._fork(self.test.forward, x)
y = self.test(x)
z = torch.jit._wait(fut)
return y + z
m = torch.jit.script(MainModule())
m.eval()
mf = torch._C._freeze_module(m._c, freezeInterfaces=True)
def test_module_apis_interface(self):
@torch.jit.interface
class ModuleInterface(nn.Module):
def one(self, inp1: Tensor, inp2: Tensor) -> Tensor:
pass
class TestModule(nn.Module):
proxy_mod : ModuleInterface
def __init__(self):
super(TestModule, self).__init__()
self.proxy_mod = OrigModule()
def forward(self, input):
return input * 2
@torch.jit.export
def method(self, input):
for module in self.modules():
input = module(input)
return input
with self.assertRaisesRegex(Exception, "Could not compile"):
scripted_mod = torch.jit.script(TestModule())
|