File: test_parametrization.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (69 lines) | stat: -rw-r--r-- 2,529 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Owner(s): ["oncall: jit"]


import torch
from torch import nn
import torch.nn.utils.parametrize as parametrize

from torch.testing._internal.jit_utils import JitTestCase


if __name__ == '__main__':
    raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
                       "\tpython test/test_jit.py TESTNAME\n\n"
                       "instead.")

class TestParametrization(JitTestCase):
    # Define some parametrization
    class Symmetric(nn.Module):
        def forward(self, X):
            return X.triu() + X.triu(1).mT

    def test_traceable(self):
        r"""Test the jit scripting and tracing of a parametrized model."""
        model = nn.Linear(5, 5)
        parametrize.register_parametrization(model, "weight", self.Symmetric())

        x = torch.randn(3, 5)
        y = model(x)

        # Check the tracing works. Because traced functions cannot be called
        # directly, we run the comparison on the activations.
        traced_model = torch.jit.trace_module(model, {'forward': x})
        y_hat = traced_model(x)
        self.assertEqual(y, y_hat)

        # Check traced model works with caching
        with parametrize.cached():
            y_hat = traced_model(x)
            self.assertEqual(y, y_hat)

        # Check the tracing throws an error when caching
        with self.assertRaisesRegex(RuntimeError,
                                    'Cannot trace a model while caching'):
            with parametrize.cached():
                traced_model = torch.jit.trace_module(model, {'forward': x})

    def test_scriptable(self):
        # TODO: Need to fix the scripting in parametrizations
        #       Currently, all the tests below will throw torch.jit.Error
        model = nn.Linear(5, 5)
        parametrize.register_parametrization(model, "weight", self.Symmetric())

        x = torch.randn(3, 5)
        y = model(x)

        with self.assertRaises(torch.jit.Error):
            # Check scripting works
            scripted_model = torch.jit.script(model)
            y_hat = scripted_model(x)
            self.assertEqual(y, y_hat)

            with parametrize.cached():
                # Check scripted model works when caching
                y_hat = scripted_model(x)
                self.assertEqual(y, y_hat)

                # Check the scripting process throws an error when caching
                with self.assertRaisesRegex(RuntimeError, 'Caching is not implemented'):
                    scripted_model = torch.jit.trace_module(model)