1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
|
# Owner(s): ["oncall: jit"]
import torch
from torch import nn
import torch.nn.utils.parametrize as parametrize
from torch.testing._internal.jit_utils import JitTestCase
if __name__ == '__main__':
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead.")
class TestParametrization(JitTestCase):
# Define some parametrization
class Symmetric(nn.Module):
def forward(self, X):
return X.triu() + X.triu(1).mT
def test_traceable(self):
r"""Test the jit scripting and tracing of a parametrized model."""
model = nn.Linear(5, 5)
parametrize.register_parametrization(model, "weight", self.Symmetric())
x = torch.randn(3, 5)
y = model(x)
# Check the tracing works. Because traced functions cannot be called
# directly, we run the comparison on the activations.
traced_model = torch.jit.trace_module(model, {'forward': x})
y_hat = traced_model(x)
self.assertEqual(y, y_hat)
# Check traced model works with caching
with parametrize.cached():
y_hat = traced_model(x)
self.assertEqual(y, y_hat)
# Check the tracing throws an error when caching
with self.assertRaisesRegex(RuntimeError,
'Cannot trace a model while caching'):
with parametrize.cached():
traced_model = torch.jit.trace_module(model, {'forward': x})
def test_scriptable(self):
# TODO: Need to fix the scripting in parametrizations
# Currently, all the tests below will throw torch.jit.Error
model = nn.Linear(5, 5)
parametrize.register_parametrization(model, "weight", self.Symmetric())
x = torch.randn(3, 5)
y = model(x)
with self.assertRaises(torch.jit.Error):
# Check scripting works
scripted_model = torch.jit.script(model)
y_hat = scripted_model(x)
self.assertEqual(y, y_hat)
with parametrize.cached():
# Check scripted model works when caching
y_hat = scripted_model(x)
self.assertEqual(y, y_hat)
# Check the scripting process throws an error when caching
with self.assertRaisesRegex(RuntimeError, 'Caching is not implemented'):
scripted_model = torch.jit.trace_module(model)
|