1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
|
# Owner(s): ["oncall: jit"]
import os
import sys
import torch
from torch.testing._internal.jit_utils import JitTestCase, make_global
from torch.jit._monkeytype_config import _IS_MONKEYTYPE_INSTALLED
from typing import List, Dict, Tuple, Any, Optional, NamedTuple # noqa: F401
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
if not _IS_MONKEYTYPE_INSTALLED:
print("monkeytype is not installed. Skipping tests for Profile-Directed Typing", file=sys.stderr)
JitTestCase = object # type: ignore[misc, assignment] # noqa: F811
if __name__ == "__main__":
raise RuntimeError(
"This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead."
)
class TestPDT(JitTestCase):
"""
A suite of tests for profile directed typing in TorchScript.
"""
def test_nn_module(self):
class TestPDTModel(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x) -> Any:
if isinstance(x, int):
return x + 1
elif isinstance(x, float):
return x - 1
else:
return x
make_global(TestPDTModel)
pdt_model = TestPDTModel()
inp: List[Tuple[Any, ...]] = [(20, ), (2.7, ), (False, ), ]
scripted_pdt_model = torch.jit.script(pdt_model, example_inputs={pdt_model: inp})
self.assertEqual(scripted_pdt_model(50), pdt_model(50))
self.assertEqual(scripted_pdt_model(1.8), pdt_model(1.8))
self.assertTrue(scripted_pdt_model(True), pdt_model(True))
def test_nested_nn_module_class(self):
class NestedPDTInner(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
if isinstance(x, int):
return x * 10
return x
class NestedModulePDTWrapper(torch.nn.Module):
def __init__(self, inner):
super().__init__()
self.inner = inner
def forward(self, x):
return self.inner(x)
make_global(NestedPDTInner, NestedModulePDTWrapper)
inner_pdt_model = NestedPDTInner()
wrapped_pdt_model = NestedModulePDTWrapper(inner_pdt_model)
inp: List[Tuple[Any, ...]] = [(20, ), (False, )]
scripted_pdt_model = torch.jit.script(wrapped_pdt_model, example_inputs={wrapped_pdt_model: inp})
self.assertEqual(scripted_pdt_model(30), wrapped_pdt_model(30))
self.assertEqual(scripted_pdt_model(1.9), wrapped_pdt_model(1.9))
self.assertTrue(scripted_pdt_model(True), wrapped_pdt_model(True))
def test_nested_nn_module_class_with_args(self):
class NestedModulePDTInner(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, y):
if isinstance(x, int):
return x * 10 + y
return x
class NestedModulePDTOuter(torch.nn.Module):
def __init__(self, inner):
super().__init__()
self.inner = inner
def forward(self, x):
return self.inner(x, 20)
make_global(NestedModulePDTInner, NestedModulePDTOuter)
inner_pdt_model = NestedModulePDTInner()
outer_pdt_model = NestedModulePDTOuter(inner_pdt_model)
inner_input: List[Tuple[Any, ...]] = [(10, 10), (1.9, 20), ]
outer_input: List[Tuple[Any, ...]] = [(20, ), (False, )]
scripted_pdt_model = torch.jit.script(outer_pdt_model, example_inputs={inner_pdt_model: inner_input,
outer_pdt_model: outer_input, })
self.assertEqual(scripted_pdt_model(30), outer_pdt_model(30))
self.assertEqual(scripted_pdt_model(1.9), outer_pdt_model(1.9))
self.assertTrue(scripted_pdt_model(True), outer_pdt_model(True))
def test_nested_function_in_forward(self):
class NestedFunctionInForward(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return self.fun(x) + 10
def fun(self, x):
if isinstance(x, bool):
return 0
elif isinstance(x, int):
return x + 1
return 0
make_global(NestedFunctionInForward)
pdt_model = NestedFunctionInForward()
inp: List[Tuple[Any, ...]] = [(-1, ), (False, )]
scripted_pdt_model = torch.jit.script(pdt_model, example_inputs={pdt_model: inp})
self.assertEqual(scripted_pdt_model(30), pdt_model(30))
self.assertEqual(scripted_pdt_model(True), pdt_model(True))
def test_nn_module_with_export_function(self):
class TestModelWithExport(torch.nn.Module):
def __init__(self):
super().__init__()
@torch.jit.export
def fn(self, x, y) -> Any:
assert not (isinstance(x, bool) and isinstance(y, bool))
if isinstance(x, int) and isinstance(y, int):
return x + y
elif isinstance(x, float) and isinstance(y, float):
return x - y
else:
return -1
make_global(TestModelWithExport)
pdt_model = TestModelWithExport()
inp: List[Tuple[Any, ...]] = [(20, 10, ), (2.7, 8.9, ), ]
scripted_pdt_model = torch.jit.script(pdt_model, example_inputs={pdt_model.fn: inp})
self.assertEqual(scripted_pdt_model.fn(10, 90), pdt_model.fn(10, 90))
self.assertEqual(scripted_pdt_model.fn(1.8, 2.2), pdt_model.fn(1.8, 2.2))
self.assertTrue(scripted_pdt_model.fn(torch.ones(1), 2), pdt_model.fn(torch.ones(1), 2))
def test_class_methods(self):
class PDTModel:
def test_sum(self, a):
return sum(a)
make_global(PDTModel)
pdt_model = PDTModel()
inp: List[Tuple[Any, ...]] = [([10, 20, ], ), ]
scripted_pdt_model = torch.jit.script(PDTModel, example_inputs={pdt_model.test_sum: inp})
script_model = scripted_pdt_model()
self.assertEqual(script_model.test_sum([10, 20, 30, ], ), pdt_model.test_sum([10, 20, 30, ], ))
def test_class_with_multiple_methods(self):
class PDTModelWithManyMethods:
def test_list_to_dict(self, a):
new_dictionary: Dict[float, bool] = {}
for element in a:
new_dictionary[element] = True
return new_dictionary
def test_substring(self, a, b):
return b in a
make_global(PDTModelWithManyMethods)
pdt_model = PDTModelWithManyMethods()
list_inp: List[Tuple[Any, ...]] = [([1.2, 2.3, ], ), ]
str_inp: List[Tuple[Any, ...]] = [("abc", "b", ), ]
scripted_pdt_model = torch.jit.script(PDTModelWithManyMethods, example_inputs={pdt_model.test_list_to_dict: list_inp,
pdt_model.test_substring: str_inp})
script_model = scripted_pdt_model()
self.assertEqual(script_model.test_list_to_dict([1.1, 2.2, 3.3, ], ), pdt_model.test_list_to_dict([1.1, 2.2, 3.3, ], ))
self.assertEqual(script_model.test_substring("helloworld", "world", ), pdt_model.test_substring("helloworld", "world", ))
self.assertEqual(script_model.test_substring("helloworld", "def", ), pdt_model.test_substring("helloworld", "def", ))
def test_multiple_class_with_same_method(self):
class PDTModelOne:
def test_find(self, a, b):
return b in a.keys()
class PDTModelTwo:
def test_find(self, a, b):
return b in a
make_global(PDTModelOne, PDTModelTwo)
pdt_model_one = PDTModelOne()
pdt_model_two = PDTModelTwo()
dict_inp: List[Tuple[Any, ...]] = [({1.2: True, 2.3: False, }, 1.2), ]
list_inp: List[Tuple[Any, ...]] = [(["abc", "b", ], "c"), ]
scripted_pdt_model_one = torch.jit.script(PDTModelOne, example_inputs={pdt_model_one.test_find: dict_inp})
scripted_pdt_model_two = torch.jit.script(PDTModelTwo, example_inputs={pdt_model_two.test_find: list_inp})
script_model_one, script_model_two = scripted_pdt_model_one(), scripted_pdt_model_two()
self.assertEqual(script_model_one.test_find({1.1: True, 2.2: True, 3.3: False, }, 4.4),
pdt_model_one.test_find({1.1: True, 2.2: True, 3.3: False, }, 4.4))
self.assertEqual(script_model_two.test_find(["hello", "world", ], "world"),
pdt_model_two.test_find(["hello", "world", ], "world"))
def test_pdt(self):
def test_sum(a, b):
return a + b
make_global(test_sum)
scripted_fn_add = torch.jit.script(test_sum, example_inputs=[(3, 4)])
self.assertEqual(scripted_fn_add(10, 2), test_sum(10, 2))
def test_sub(a, b):
return a - b
make_global(test_sub)
scripted_fn_sub = torch.jit.script(test_sub, example_inputs=[(3.9, 4.10)])
self.assertEqual(scripted_fn_sub(6.5, 2.9), test_sub(6.5, 2.9))
def test_mul(a, b):
return a * b
make_global(test_mul)
scripted_fn_mul = torch.jit.script(test_mul, example_inputs=[(-10, 9)])
self.assertEqual(scripted_fn_mul(-1, 3), test_mul(-1, 3))
def test_args_complex(real, img):
return torch.complex(real, img)
make_global(test_args_complex)
scripted_fn_complex = torch.jit.script(test_args_complex, example_inputs=[(torch.rand(3, 4), torch.rand(3, 4))])
arg1, arg2 = torch.rand(3, 4), torch.rand(3, 4)
self.assertEqual(scripted_fn_complex(arg1, arg2), test_args_complex(arg1, arg2))
def test_bool(a):
if a:
return -1
else:
return 0
make_global(test_bool)
scripted_fn_bool = torch.jit.script(test_bool, example_inputs=[(True,)])
self.assertEqual(scripted_fn_bool(True), test_bool(True))
def test_str(a):
if a == "":
return False
else:
return True
make_global(test_str)
scripted_fn_str = torch.jit.script(test_str, example_inputs=[("",)])
self.assertEqual(scripted_fn_str("abc"), test_str("abc"))
def test_pdt_list_and_tuple(self):
def test_list_and_tuple(a):
return sum(a)
make_global(test_list_and_tuple)
scripted_fn_float_list_input = torch.jit.script(test_list_and_tuple, example_inputs=[([4.9, 8.9],)])
self.assertEqual(scripted_fn_float_list_input([11.9, 7.6]), test_list_and_tuple([11.9, 7.6]))
scripted_fn_bool_list_input = torch.jit.script(test_list_and_tuple, example_inputs=[([True, False, True],)])
self.assertEqual(scripted_fn_bool_list_input([True, True, True]), test_list_and_tuple([True, True, True]))
scripted_fn_int_list_input = torch.jit.script(test_list_and_tuple, example_inputs=[([3, 4, 5], )])
self.assertEqual(scripted_fn_int_list_input([1, 2, 3]), test_list_and_tuple([1, 2, 3]))
scripted_fn_float_tuple_input = torch.jit.script(test_list_and_tuple, example_inputs=[((4.9, 8.9),)])
self.assertEqual(scripted_fn_float_tuple_input((11.9, 7.6)), test_list_and_tuple((11.9, 7.6)))
scripted_fn_bool_tuple_input = torch.jit.script(test_list_and_tuple,
example_inputs=[((True, False, True),)])
self.assertEqual(scripted_fn_bool_tuple_input((True, True, True)),
test_list_and_tuple((True, True, True)))
scripted_fn_int_tuple_input = torch.jit.script(test_list_and_tuple, example_inputs=[((3, 4, 5), )])
self.assertEqual(scripted_fn_int_tuple_input((1, 2, 3)), test_list_and_tuple((1, 2, 3)))
def test_nested_list_and_tuple(self):
def test_nested_list(inp):
return [sum(v) for v in inp]
def test_nested_tuple(inp):
ans = 0.0
for tup in inp:
for val in tup:
if val > 0:
ans *= val
return ans
make_global(test_nested_list, test_nested_tuple)
list_inp = [[1, 2, 3, ], [5, 6, 7, ]]
scripted_fn = torch.jit.script(test_nested_list, example_inputs=[(list_inp, ), ])
inp = [[0, 4, 7, ], [8, 11, ], [6, -1, -20, ]]
self.assertEqual(scripted_fn(inp, ), test_nested_list(inp, ))
list_inp = ([1, 2, 3, ], [5, 6, 7, ])
scripted_fn = torch.jit.script(test_nested_list, example_inputs=[(list_inp, ), ])
inp = ([0, 4, 7, ], [8, 11, ], [6, -1, -20, ])
self.assertEqual(scripted_fn(inp, ), test_nested_list(inp, ))
tup_inp = [(1.0, 2.6, 3.7, ), (5.7, 6.1, 1.7, )]
scripted_fn = torch.jit.script(test_nested_tuple, example_inputs=[(tup_inp, ), ])
inp = [(1.0, 4.1, 7.4, ), (4.8, 1.1, -1.2, ), (6.3, -1.3, -2.0, )]
self.assertEqual(scripted_fn(inp, ), test_nested_tuple(inp, ))
tup_inp = ((True, False, True, ), (False, False, False, ))
scripted_fn = torch.jit.script(test_nested_tuple, example_inputs=[(tup_inp, ), ])
inp = ((True, True, True, ), (False, False, True, ))
self.assertEqual(scripted_fn(inp, ), test_nested_tuple(inp, ))
def test_pdt_dict(self):
def test_dict(a):
return a['foo']
def test_dict_int_list(a):
return a[1]
make_global(test_dict, test_dict_int_list)
str_bool_inp = {'foo' : True, 'bar': False}
scripted_fn = torch.jit.script(test_dict, example_inputs=[(str_bool_inp,)])
self.assertEqual(scripted_fn({'foo' : False, 'bar': True}, ), test_dict({'foo' : False, 'bar': True}, ))
str_list_inp = {0 : [True, False], 1: [False, True]}
scripted_fn = torch.jit.script(test_dict_int_list, example_inputs=[(str_list_inp,)])
self.assertEqual(scripted_fn({0 : [False, False], 1: [True, True]}, ),
test_dict_int_list({0 : [False, False], 1: [True, True]}, ))
def test_any(self):
def test_multiple_types(a):
assert not isinstance(a, bool)
return a
def test_multiple_type_refinement(a):
if isinstance(a, bool):
return 1
elif isinstance(a, int):
return 1 + a
elif isinstance(a, float):
return 1 + int(a)
else:
return -1
make_global(test_multiple_types, test_multiple_type_refinement)
scripted_fn = torch.jit.script(test_multiple_types, example_inputs=[(1,), ("abc", ), (8.9,), ([3, 4, 5], )])
self.assertEqual(scripted_fn(10), test_multiple_types(10))
self.assertEqual(scripted_fn("def"), test_multiple_types("def"))
self.assertEqual(scripted_fn(7.89999), test_multiple_types(7.89999))
self.assertEqual(scripted_fn([10, 11, 14]), test_multiple_types([10, 11, 14]))
scripted_fn = torch.jit.script(test_multiple_type_refinement, example_inputs=[(1,), ("abc", ), (8.9,),
([3, 4, 5],), (True, ), ({"a": True}, ), ])
self.assertEqual(scripted_fn(10), test_multiple_type_refinement(10))
self.assertEqual(scripted_fn("def"), test_multiple_type_refinement("def"))
self.assertEqual(scripted_fn(7.89999), test_multiple_type_refinement(7.89999))
self.assertEqual(scripted_fn([10, 11, 14]), test_multiple_type_refinement([10, 11, 14]))
self.assertEqual(scripted_fn(False), test_multiple_type_refinement(False))
self.assertEqual(scripted_fn({"abc" : True, "def": False}), test_multiple_type_refinement({"abc" : True, "def": False}))
def test_class_as_profiled_types(self):
class UserDefinedClass:
def fn(self, b) -> Any:
assert b is not None
if isinstance(b, int):
return b if b > 0 else -1
elif isinstance(b, float):
return b if b > 0.0 else -1.0
return 0
def test_model(a, m):
assert not isinstance(a, bool)
return m.fn(a)
make_global(UserDefinedClass, test_model)
user_class = UserDefinedClass()
scripted_fn = torch.jit.script(test_model, example_inputs=[(10, user_class, ), (10.9, user_class, ), ])
self.assertEqual(scripted_fn(100, user_class, ), test_model(100, user_class))
self.assertEqual(scripted_fn(1.9, user_class, ), test_model(1.9, user_class))
def test_class_with_args_as_profiled_types(self):
class ClassWithArgs:
def __init__(self, a: bool):
self.a = a
def fn(self, b):
if self.a:
return b
else:
return -1
def test_model_with_args(a, m):
assert not isinstance(a, bool)
return m.fn(a)
make_global(ClassWithArgs, test_model_with_args)
user_class = ClassWithArgs(False)
scripted_fn = torch.jit.script(test_model_with_args, example_inputs=[(10, user_class, ), (10.9, user_class, ), ])
self.assertEqual(scripted_fn(100, ClassWithArgs(True), ), test_model_with_args(100, ClassWithArgs(True)))
def test_nn_parameter_as_arg(self):
class TestNNParameter(torch.nn.Module):
def __init__(self):
super().__init__()
self.inp = torch.nn.Parameter(torch.ones(2, 3))
def add_nn_parameter_with_int(self, x, y):
return torch.add(x, y)
def forward(self, y):
return self.add_nn_parameter_with_int(self.inp, y)
make_global(TestNNParameter)
pdt_model = TestNNParameter()
scripted_fn = torch.jit.script(pdt_model, example_inputs={pdt_model: [(10, ), ], })
self.assertEqual(scripted_fn(20), pdt_model(20))
def test_fx_tracing_with_typing(self):
class FXModelOutput(NamedTuple):
result: List[int]
class FXModel(torch.nn.Module):
def forward(self, a) -> FXModelOutput:
result = FXModelOutput(result=a)
return result
make_global(FXModel, FXModelOutput)
pdt_model = FXModel()
scripted_fn = torch.jit.script(pdt_model, example_inputs={pdt_model: [([10, 20, ], ), ], })
self.assertEqual(scripted_fn([20]), pdt_model([20]))
def test_nonetype_as_optional_of_type(self):
def test_none(a) -> Any:
if a is None:
return 0
else:
return a + torch.ones(1)
make_global(test_none)
scripted_fn = torch.jit.script(test_none, example_inputs=[(None, ), (10.6, )])
self.assertEqual(scripted_fn(30.9, ), test_none(30.9, ))
scripted_fn = torch.jit.script(test_none, example_inputs=[(None, ), (10, )])
self.assertEqual(scripted_fn(2, ), test_none(2, ))
scripted_fn = torch.jit.script(test_none, example_inputs=[(None, ), (torch.Tensor(1), )])
self.assertEqual(scripted_fn(torch.ones(1), ), test_none(torch.ones(1), ))
|