1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
# Owner(s): ["oncall: jit"]
import os
import sys
import torch
from torch.testing import FileCheck
from typing import List
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase, freeze_rng_state
if __name__ == '__main__':
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead.")
class TestRemoveMutation(JitTestCase):
def test_aten_inplace(self):
def test_not_new_alias(x):
y = x[0]
y.add_(2)
return y
fn = torch.jit.script(test_not_new_alias)
graph = fn.graph
self.run_pass('remove_mutation', graph)
FileCheck().check("aten::add_").run(graph)
self.assertEqual(fn(torch.ones([2, 2])), test_not_new_alias(torch.ones([2, 2])))
def test_no_lowering():
x = torch.tensor([2, 2])
x[0] = 3
return x
# there is no functional equivalent of x[0] = ...
fn = torch.jit.script(test_no_lowering)
graph = fn.graph
self.run_pass('remove_mutation', graph)
FileCheck().check("aten::copy_").run(graph)
self.assertEqual(fn(), test_no_lowering())
def test_move_before_not_valid():
y = torch.tensor([2, 2])
z = y + 2
y.add_(2)
return y, z
fn = torch.jit.script(test_move_before_not_valid)
graph = fn.graph
self.run_pass('remove_mutation', graph)
FileCheck().check("aten::add_").run(graph)
self.assertEqual(fn(), test_move_before_not_valid())
def test_successful():
x = torch.tensor([2, 2])
x.add_(1)
x.add_(3)
y = x + 4
return x, y
fn = torch.jit.script(test_successful)
graph = fn.graph
self.run_pass('remove_mutation', graph)
FileCheck().check_not("aten::add_").run(graph)
self.assertEqual(test_successful(), fn())
def test_intermediary_use():
x = torch.tensor([2, 2])
x.add_(1)
y = x + 4
x.add_(3)
return x, y
fn = torch.jit.script(test_intermediary_use)
graph = fn.graph
FileCheck().check_count("aten::add_", 2).run(graph)
self.run_pass('remove_mutation', graph)
# Unable to remove the second add_ because of the y = x + 4 use
# In the future we could duplicating the value of x as a temporary and replacing
# its intermediary use (so long as aliasing is safe)
FileCheck().check_count("aten::add_", 1).run(graph)
self.assertEqual(test_intermediary_use(), fn())
def test_if_output(self):
def foo(x, cond: bool):
if cond:
y = x + 5
else:
y = x + 2
y.add_(4)
return y
out_eager = foo(torch.tensor(5), True)
foo_script = torch.jit.script(foo)
FileCheck().check("aten::add_").run(foo_script.graph)
self.run_pass('remove_mutation', foo_script.graph)
FileCheck().check_not("aten::add_").run(foo_script.graph)
self.assertEqual(out_eager, foo_script(torch.tensor(5), True))
def test_if_output_fail(self):
@torch.jit.script
def foo(cond: bool):
li = []
if cond:
x = torch.tensor(1)
li.append(x)
else:
x = torch.tensor(2)
y = x.add_(2)
return y, li
self.run_pass('inline', foo.graph)
self.run_pass('remove_mutation', foo.graph)
FileCheck().check("aten::add_").run(foo.graph)
@torch.jit.script
def foo(cond: bool, y):
if cond:
x = y
else:
x = torch.tensor(2)
z = x.add_(2)
return z
self.run_pass('inline', foo.graph)
self.run_pass('remove_mutation', foo.graph)
FileCheck().check("aten::add_").run(foo.graph)
def test_special_mapped_op(self):
def test_successful():
x = torch.tensor([2, 2])
y = torch.tensor([2, 4])
x.zero_()
y.fill_(3)
return x, y
fn = torch.jit.script(test_successful)
graph = fn.graph
self.run_pass('remove_mutation', graph)
FileCheck().check_not("aten::zero_").check_not("aten::fill_").run(graph)
self.assertEqual(test_successful(), fn())
# full_like is not implemented for a tensor fill value
def test_successful():
x = torch.tensor([2, 2])
y = torch.tensor([2, 4])
x.fill_(y)
return x + x
fn = torch.jit.script(test_successful)
graph = fn.graph
self.run_pass('remove_mutation', graph)
FileCheck().check_not('aten::fill_').run(graph)
def normal():
return torch.rand(2, 1, 3, 4).normal_()
fn = torch.jit.script(normal)
graph = fn.graph
self.run_pass('remove_mutation', graph)
FileCheck().check_not("normal_").run(graph)
with freeze_rng_state():
out_eager = normal()
with freeze_rng_state():
out_script = fn()
self.assertEqual(out_eager, out_script)
def test_lists_append(self):
def successful_remove():
return [i for i in range(5)] # noqa: C416
fn = torch.jit.script(successful_remove)
graph = fn.graph
self.run_pass('loop_unrolling', graph)
self.run_pass('remove_mutation', graph)
self.run_pass('constant_propagation', graph)
FileCheck().check("graph").check_next("Constant").check_next("return").run(graph)
self.assertEqual(successful_remove(), successful_remove())
def intermediary_use():
a = [1, 2]
b = len(a)
a.append(3)
return a
fn = torch.jit.script(intermediary_use)
graph = fn.graph
FileCheck().check("append").run(graph)
self.run_pass('remove_mutation', graph)
# it is possible to remove the append here but don't currently have the logic for it
FileCheck().check_not("append").run(graph)
self.assertEqual(intermediary_use(), fn())
def test_lists_insert(self):
def successful_remove():
a : List[int] = []
a.insert(0, 1)
a.insert(0, 2)
a.insert(-10, 3)
a.insert(-9, 4)
a.insert(10, 5)
return a
fn = torch.jit.script(successful_remove)
graph = fn.graph
torch._C._jit_pass_remove_mutation(graph)
torch._C._jit_pass_constant_propagation(graph)
FileCheck().check("graph").check_next("Constant").check_next("return").run(graph)
self.assertEqual(successful_remove(), fn())
def test_list_indexing_removal(self):
@torch.jit.script
def out_of_bounds():
x = [1, 2]
x[4] = 3
return x
torch._C._jit_pass_remove_mutation(out_of_bounds.graph)
FileCheck().check("set_item").run(out_of_bounds.graph)
@torch.jit.script
def unknown(y: int):
x = [1, 2]
x[y] = 3
return x
torch._C._jit_pass_remove_mutation(out_of_bounds.graph)
FileCheck().check("set_item").run(out_of_bounds.graph)
def successful():
x = [1, 2, 3]
x[0] = 4
x[-1] = 0
return x
scripted_fn = torch.jit.script(successful)
torch._C._jit_pass_remove_mutation(scripted_fn.graph)
FileCheck().check_not("set_item").run(scripted_fn.graph)
self.checkScript(successful, ())
def successful():
x = [1, 2, 3]
x[0] = 4
x[-1] = 0
return x
scripted_fn = torch.jit.script(successful)
torch._C._jit_pass_remove_mutation(scripted_fn.graph)
FileCheck().check_not("set_item").run(scripted_fn.graph)
self.checkScript(successful, ())
def successful():
x = [1]
x[-1] = 3
return x
scripted_fn = torch.jit.script(successful)
torch._C._jit_pass_remove_mutation(scripted_fn.graph)
FileCheck().check_not("set_item").run(scripted_fn.graph)
self.checkScript(successful, ())
def test_common_pytorch_list_ops(self):
for op in ["cat", "stack", "vstack", "hstack", "dstack"]:
class OpMod(torch.nn.Module):
def __init__(self, op):
super(OpMod, self).__init__()
self.op = torch_op
def forward(self):
x = torch.tensor([1, 2, 3, 4])
x.add_(3)
y = [x, x]
return self.op(y) + 3
torch_op = getattr(torch, op)
mod = OpMod(torch_op)
mod_script = torch.jit.script(mod)
self.run_pass('remove_mutation', mod_script.forward.graph)
FileCheck().check_not("aten::add_").run(mod_script.forward.graph)
self.assertEqual(mod(), mod_script())
# test that the output doesnt alias the input
for inputs in [torch.rand(2, 2)], [torch.rand(2, 2) for _ in range(2)]:
result = torch_op(inputs)
sums = [ten.sum() for ten in result]
for inp in inputs:
inp.fill_(10)
self.assertEqual(sums, [ten.sum() for ten in result])
@torch.jit.script
def test_multiple_uses():
x = torch.tensor([1, 2, 3, 4])
x.add_(3)
y = [x, x]
return torch.cat(y), y
self.run_pass('remove_mutation', mod_script.forward.graph)
FileCheck().check("aten::add_").run(test_multiple_uses.graph)
|