File: test_save_load_for_op_version.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (542 lines) | stat: -rw-r--r-- 23,192 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
# Owner(s): ["oncall: jit"]

from itertools import product as product
import io
import os
import sys
import hypothesis.strategies as st
from hypothesis import example, settings, given
from typing import Union

import torch

# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase
from torch.jit.mobile import _load_for_lite_interpreter

if __name__ == "__main__":
    raise RuntimeError(
        "This test file is not meant to be run directly, use:\n\n"
        "\tpython test/test_jit.py TESTNAME\n\n"
        "instead."
    )

class TestSaveLoadForOpVersion(JitTestCase):
    # Helper that returns the module after saving and loading
    def _save_load_module(self, m):
        scripted_module = torch.jit.script(m())
        buffer = io.BytesIO()
        torch.jit.save(scripted_module, buffer)
        buffer.seek(0)
        return torch.jit.load(buffer)

    def _save_load_mobile_module(self, m):
        scripted_module = torch.jit.script(m())
        buffer = io.BytesIO(scripted_module._save_to_buffer_for_lite_interpreter())
        buffer.seek(0)
        return _load_for_lite_interpreter(buffer)

    # Helper which returns the result of a function or the exception the
    #   function threw.
    def _try_fn(self, fn, *args, **kwargs):
        try:
            return fn(*args, **kwargs)
        except Exception as e:
            return e

    def _verify_no(self, kind, m):
        self._verify_count(kind, m, 0)

    def _verify_count(self, kind, m, count):
        node_count = sum(str(n).count(kind) for n in m.graph.nodes())
        self.assertEqual(node_count, count)


    """
    Tests that verify Torchscript remaps aten::div(_) from versions 0-3
    to call either aten::true_divide(_), if an input is a float type,
    or truncated aten::divide(_) otherwise.
    NOTE: currently compares against current div behavior, too, since
      div behavior has not yet been updated.
    """

    @settings(max_examples=10, deadline=200000)  # A total of 10 examples will be generated
    @given(
        sample_input=st.tuples(st.integers(min_value=5, max_value=199), st.floats(min_value=5.0, max_value=199.0))
    )  # Generate a pair (integer, float)
    @example((2, 3, 2.0, 3.0))  # Ensure this example will be covered
    def test_versioned_div_tensor(self, sample_input):
        def historic_div(self, other):
            if self.is_floating_point() or other.is_floating_point():
                return self.true_divide(other)
            return self.divide(other, rounding_mode='trunc')

        # Tensor x Tensor
        class MyModule(torch.nn.Module):
            def __init__(self):
                super(MyModule, self).__init__()

            def forward(self, a, b):
                result_0 = a / b
                result_1 = torch.div(a, b)
                result_2 = a.div(b)

                return result_0, result_1, result_2

        # Loads historic module
        try:
            v3_mobile_module = _load_for_lite_interpreter(
                pytorch_test_dir + "/cpp/jit/upgrader_models/test_versioned_div_tensor_v2.ptl")
        except Exception as e:
            self.skipTest("Failed to load fixture!")

        current_mobile_module = self._save_load_mobile_module(MyModule)

        for val_a, val_b in product(sample_input, sample_input):
            a = torch.tensor((val_a,))
            b = torch.tensor((val_b,))

            def _helper(m, fn):
                m_results = self._try_fn(m, a, b)
                fn_result = self._try_fn(fn, a, b)

                if isinstance(m_results, Exception):
                    self.assertTrue(isinstance(fn_result, Exception))
                else:
                    for result in m_results:
                        self.assertEqual(result, fn_result)

            _helper(v3_mobile_module, historic_div)
            _helper(current_mobile_module, torch.div)

    @settings(max_examples=10, deadline=200000)  # A total of 10 examples will be generated
    @given(
        sample_input=st.tuples(st.integers(min_value=5, max_value=199), st.floats(min_value=5.0, max_value=199.0))
    )  # Generate a pair (integer, float)
    @example((2, 3, 2.0, 3.0))  # Ensure this example will be covered
    def test_versioned_div_tensor_inplace(self, sample_input):
        def historic_div_(self, other):
            if self.is_floating_point() or other.is_floating_point():
                return self.true_divide_(other)
            return self.divide_(other, rounding_mode='trunc')

        class MyModule(torch.nn.Module):
            def __init__(self):
                super(MyModule, self).__init__()

            def forward(self, a, b):
                a /= b
                return a

        try:
            v3_mobile_module = _load_for_lite_interpreter(
                pytorch_test_dir + "/cpp/jit/upgrader_models/test_versioned_div_tensor_inplace_v2.ptl")
        except Exception as e:
            self.skipTest("Failed to load fixture!")

        current_mobile_module = self._save_load_mobile_module(MyModule)

        for val_a, val_b in product(sample_input, sample_input):
            a = torch.tensor((val_a,))
            b = torch.tensor((val_b,))

            def _helper(m, fn):
                fn_result = self._try_fn(fn, a.clone(), b)
                m_result = self._try_fn(m, a, b)
                if isinstance(m_result, Exception):
                    self.assertTrue(fn_result, Exception)
                else:
                    self.assertEqual(m_result, fn_result)
                    self.assertEqual(m_result, a)

            _helper(v3_mobile_module, historic_div_)

            # Recreates a since it was modified in place
            a = torch.tensor((val_a,))
            _helper(current_mobile_module, torch.Tensor.div_)

    @settings(max_examples=10, deadline=200000)  # A total of 10 examples will be generated
    @given(
        sample_input=st.tuples(st.integers(min_value=5, max_value=199), st.floats(min_value=5.0, max_value=199.0))
    )  # Generate a pair (integer, float)
    @example((2, 3, 2.0, 3.0))  # Ensure this example will be covered
    def test_versioned_div_tensor_out(self, sample_input):
        def historic_div_out(self, other, out):
            if self.is_floating_point() or other.is_floating_point() or out.is_floating_point():
                return torch.true_divide(self, other, out=out)
            return torch.divide(self, other, out=out, rounding_mode='trunc')

        class MyModule(torch.nn.Module):
            def __init__(self):
                super(MyModule, self).__init__()

            def forward(self, a, b, out):
                return a.div(b, out=out)

        try:
            v3_mobile_module = _load_for_lite_interpreter(
                pytorch_test_dir + "/cpp/jit/upgrader_models/test_versioned_div_tensor_out_v2.ptl")
        except Exception as e:
            self.skipTest("Failed to load fixture!")

        current_mobile_module = self._save_load_mobile_module(MyModule)

        for val_a, val_b in product(sample_input, sample_input):
            a = torch.tensor((val_a,))
            b = torch.tensor((val_b,))

            for out in (torch.empty((1,)), torch.empty((1,), dtype=torch.long)):
                def _helper(m, fn):
                    fn_result = None
                    if fn is torch.div:
                        fn_result = self._try_fn(fn, a, b, out=out.clone())
                    else:
                        fn_result = self._try_fn(fn, a, b, out.clone())
                    m_result = self._try_fn(m, a, b, out)

                    if isinstance(m_result, Exception):
                        self.assertTrue(fn_result, Exception)
                    else:
                        self.assertEqual(m_result, fn_result)
                        self.assertEqual(m_result, out)

                _helper(v3_mobile_module, historic_div_out)
                _helper(current_mobile_module, torch.div)

    @settings(max_examples=10, deadline=200000)  # A total of 10 examples will be generated
    @given(
        sample_input=st.tuples(st.integers(min_value=5, max_value=199), st.floats(min_value=5.0, max_value=199.0))
    )  # Generate a pair (integer, float)
    @example((2, 3, 2.0, 3.0))  # Ensure this example will be covered
    def test_versioned_div_scalar(self, sample_input):
        def historic_div_scalar_float(self, other: float):
            return torch.true_divide(self, other)

        def historic_div_scalar_int(self, other: int):
            if self.is_floating_point():
                return torch.true_divide(self, other)
            return torch.divide(self, other, rounding_mode='trunc')

        class MyModuleFloat(torch.nn.Module):
            def __init__(self):
                super(MyModuleFloat, self).__init__()

            def forward(self, a, b: float):
                return a / b

        class MyModuleInt(torch.nn.Module):
            def __init__(self):
                super(MyModuleInt, self).__init__()

            def forward(self, a, b: int):
                return a / b

        try:
            v3_mobile_module_float = _load_for_lite_interpreter(
                pytorch_test_dir + "/jit/fixtures/test_versioned_div_scalar_float_v2.ptl")
            v3_mobile_module_int = _load_for_lite_interpreter(
                pytorch_test_dir + "/cpp/jit/upgrader_models/test_versioned_div_scalar_int_v2.ptl")
        except Exception as e:
            self.skipTest("Failed to load fixture!")

        current_mobile_module_float = self._save_load_mobile_module(MyModuleFloat)
        current_mobile_module_int = self._save_load_mobile_module(MyModuleInt)

        for val_a, val_b in product(sample_input, sample_input):
            a = torch.tensor((val_a,))
            b = val_b

            def _helper(m, fn):
                m_result = self._try_fn(m, a, b)
                fn_result = self._try_fn(fn, a, b)

                if isinstance(m_result, Exception):
                    self.assertTrue(fn_result, Exception)
                else:
                    self.assertEqual(m_result, fn_result)

            if isinstance(b, float):
                _helper(v3_mobile_module_float, current_mobile_module_float)
                _helper(current_mobile_module_float, torch.div)
            else:
                _helper(v3_mobile_module_int, historic_div_scalar_int)
                _helper(current_mobile_module_int, torch.div)

    @settings(max_examples=10, deadline=200000)  # A total of 10 examples will be generated
    @given(
        sample_input=st.tuples(st.integers(min_value=5, max_value=199), st.floats(min_value=5.0, max_value=199.0))
    )  # Generate a pair (integer, float)
    @example((2, 3, 2.0, 3.0))  # Ensure this example will be covered
    def test_versioned_div_scalar_reciprocal(self, sample_input):
        def historic_div_scalar_float_reciprocal(self, other: float):
            return other / self

        def historic_div_scalar_int_reciprocal(self, other: int):
            if self.is_floating_point():
                return other / self
            return torch.divide(other, self, rounding_mode='trunc')

        class MyModuleFloat(torch.nn.Module):
            def __init__(self):
                super(MyModuleFloat, self).__init__()

            def forward(self, a, b: float):
                return b / a

        class MyModuleInt(torch.nn.Module):
            def __init__(self):
                super(MyModuleInt, self).__init__()

            def forward(self, a, b: int):
                return b / a

        try:
            v3_mobile_module_float = _load_for_lite_interpreter(
                pytorch_test_dir + "/cpp/jit/upgrader_models/test_versioned_div_scalar_reciprocal_float_v2.ptl")
            v3_mobile_module_int = _load_for_lite_interpreter(
                pytorch_test_dir + "/cpp/jit/upgrader_models/test_versioned_div_scalar_reciprocal_int_v2.ptl")
        except Exception as e:
            self.skipTest("Failed to load fixture!")

        current_mobile_module_float = self._save_load_mobile_module(MyModuleFloat)
        current_mobile_module_int = self._save_load_mobile_module(MyModuleInt)

        for val_a, val_b in product(sample_input, sample_input):
            a = torch.tensor((val_a,))
            b = val_b

            def _helper(m, fn):
                m_result = self._try_fn(m, a, b)
                fn_result = None
                # Reverses argument order for torch.div
                if fn is torch.div:
                    fn_result = self._try_fn(torch.div, b, a)
                else:
                    fn_result = self._try_fn(fn, a, b)

                if isinstance(m_result, Exception):
                    self.assertTrue(isinstance(fn_result, Exception))
                elif fn is torch.div or a.is_floating_point():
                    self.assertEqual(m_result, fn_result)
                else:
                    # Skip when fn is not torch.div and a is integral because
                    # historic_div_scalar_int performs floored division
                    pass

            if isinstance(b, float):
                _helper(v3_mobile_module_float, current_mobile_module_float)
                _helper(current_mobile_module_float, torch.div)
            else:
                _helper(v3_mobile_module_int, current_mobile_module_int)
                _helper(current_mobile_module_int, torch.div)

    @settings(max_examples=10, deadline=200000)  # A total of 10 examples will be generated
    @given(
        sample_input=st.tuples(st.integers(min_value=5, max_value=199), st.floats(min_value=5.0, max_value=199.0))
    )  # Generate a pair (integer, float)
    @example((2, 3, 2.0, 3.0))  # Ensure this example will be covered
    def test_versioned_div_scalar_inplace(self, sample_input):
        def historic_div_scalar_float_inplace(self, other: float):
            return self.true_divide_(other)

        def historic_div_scalar_int_inplace(self, other: int):
            if self.is_floating_point():
                return self.true_divide_(other)

            return self.divide_(other, rounding_mode='trunc')

        class MyModuleFloat(torch.nn.Module):
            def __init__(self):
                super(MyModuleFloat, self).__init__()

            def forward(self, a, b: float):
                a /= b
                return a

        class MyModuleInt(torch.nn.Module):
            def __init__(self):
                super(MyModuleInt, self).__init__()

            def forward(self, a, b: int):
                a /= b
                return a

        try:
            v3_mobile_module_float = _load_for_lite_interpreter(
                pytorch_test_dir + "/cpp/jit/upgrader_models/test_versioned_div_scalar_inplace_float_v2.ptl")
            v3_mobile_module_int = _load_for_lite_interpreter(
                pytorch_test_dir + "/cpp/jit/upgrader_models/test_versioned_div_scalar_inplace_int_v2.ptl")
        except Exception as e:
            self.skipTest("Failed to load fixture!")

        current_mobile_module_float = self._save_load_module(MyModuleFloat)
        current_mobile_module_int = self._save_load_module(MyModuleInt)

        for val_a, val_b in product(sample_input, sample_input):
            a = torch.tensor((val_a,))
            b = val_b

            def _helper(m, fn):
                m_result = self._try_fn(m, a, b)
                fn_result = self._try_fn(fn, a, b)

                if isinstance(m_result, Exception):
                    self.assertTrue(fn_result, Exception)
                else:
                    self.assertEqual(m_result, fn_result)

            if isinstance(b, float):
                _helper(current_mobile_module_float, torch.Tensor.div_)
            else:
                _helper(current_mobile_module_int, torch.Tensor.div_)

    # NOTE: Scalar division was already true division in op version 3,
    #   so this test verifies the behavior is unchanged.
    def test_versioned_div_scalar_scalar(self):
        class MyModule(torch.nn.Module):
            def __init__(self):
                super(MyModule, self).__init__()

            def forward(self, a: float, b: int, c: float, d: int):
                result_0 = a / b
                result_1 = a / c
                result_2 = b / c
                result_3 = b / d
                return (result_0, result_1, result_2, result_3)

        try:
            v3_mobile_module = _load_for_lite_interpreter(
                pytorch_test_dir + "/cpp/jit/upgrader_models/test_versioned_div_scalar_scalar_v2.ptl")
        except Exception as e:
            self.skipTest("Failed to load fixture!")

        current_mobile_module = self._save_load_mobile_module(MyModule)

        def _helper(m, fn):
            vals = (5., 3, 2., 7)
            m_result = m(*vals)
            fn_result = fn(*vals)
            for mr, hr in zip(m_result, fn_result):
                self.assertEqual(mr, hr)

        _helper(v3_mobile_module, current_mobile_module)

    def test_versioned_linspace(self):
        class Module(torch.nn.Module):
            def __init__(self):
                super(Module, self).__init__()

            def forward(self, a: Union[int, float, complex], b: Union[int, float, complex]):
                c = torch.linspace(a, b, steps=5)
                d = torch.linspace(a, b, steps=100)
                return c, d

        scripted_module = torch.jit.load(
            pytorch_test_dir + "/jit/fixtures/test_versioned_linspace_v7.ptl")

        buffer = io.BytesIO(scripted_module._save_to_buffer_for_lite_interpreter())
        buffer.seek(0)
        v7_mobile_module = _load_for_lite_interpreter(buffer)

        current_mobile_module = self._save_load_mobile_module(Module)

        sample_inputs = ((3, 10), (-10, 10), (4.0, 6.0), (3 + 4j, 4 + 5j))
        for (a, b) in sample_inputs:
            (output_with_step, output_without_step) = v7_mobile_module(a, b)
            (current_with_step, current_without_step) = current_mobile_module(a, b)
            # when no step is given, should have used 100
            self.assertTrue(output_without_step.size(dim=0) == 100)
            self.assertTrue(output_with_step.size(dim=0) == 5)
            # outputs should be equal to the newest version
            self.assertEqual(output_with_step, current_with_step)
            self.assertEqual(output_without_step, current_without_step)

    def test_versioned_linspace_out(self):
        class Module(torch.nn.Module):
            def __init__(self):
                super(Module, self).__init__()

            def forward(self, a: Union[int, float, complex], b: Union[int, float, complex], out: torch.Tensor):
                return torch.linspace(a, b, steps=100, out=out)

        model_path = pytorch_test_dir + "/jit/fixtures/test_versioned_linspace_out_v7.ptl"
        loaded_model = torch.jit.load(model_path)
        buffer = io.BytesIO(loaded_model._save_to_buffer_for_lite_interpreter())
        buffer.seek(0)
        v7_mobile_module = _load_for_lite_interpreter(buffer)
        current_mobile_module = self._save_load_mobile_module(Module)

        sample_inputs = (
            (3, 10, torch.empty((100,), dtype=torch.int64), torch.empty((100,), dtype=torch.int64)),
            (-10, 10, torch.empty((100,), dtype=torch.int64), torch.empty((100,), dtype=torch.int64)),
            (4.0, 6.0, torch.empty((100,), dtype=torch.float64), torch.empty((100,), dtype=torch.float64)),
            (3 + 4j, 4 + 5j, torch.empty((100,), dtype=torch.complex64), torch.empty((100,), dtype=torch.complex64)),
        )
        for (start, end, out_for_old, out_for_new) in sample_inputs:
            output = v7_mobile_module(start, end, out_for_old)
            output_current = current_mobile_module(start, end, out_for_new)
            # when no step is given, should have used 100
            self.assertTrue(output.size(dim=0) == 100)
            # "Upgraded" model should match the new version output
            self.assertEqual(output, output_current)

    def test_versioned_logspace(self):
        class Module(torch.nn.Module):
            def __init__(self):
                super(Module, self).__init__()

            def forward(self, a: Union[int, float, complex], b: Union[int, float, complex]):
                c = torch.logspace(a, b, steps=5)
                d = torch.logspace(a, b, steps=100)
                return c, d

        scripted_module = torch.jit.load(
            pytorch_test_dir + "/jit/fixtures/test_versioned_logspace_v8.ptl")

        buffer = io.BytesIO(scripted_module._save_to_buffer_for_lite_interpreter())
        buffer.seek(0)
        v8_mobile_module = _load_for_lite_interpreter(buffer)

        current_mobile_module = self._save_load_mobile_module(Module)

        sample_inputs = ((3, 10), (-10, 10), (4.0, 6.0), (3 + 4j, 4 + 5j))
        for (a, b) in sample_inputs:
            (output_with_step, output_without_step) = v8_mobile_module(a, b)
            (current_with_step, current_without_step) = current_mobile_module(a, b)
            # when no step is given, should have used 100
            self.assertTrue(output_without_step.size(dim=0) == 100)
            self.assertTrue(output_with_step.size(dim=0) == 5)
            # outputs should be equal to the newest version
            self.assertEqual(output_with_step, current_with_step)
            self.assertEqual(output_without_step, current_without_step)

    def test_versioned_logspace_out(self):
        class Module(torch.nn.Module):
            def __init__(self):
                super(Module, self).__init__()

            def forward(self, a: Union[int, float, complex], b: Union[int, float, complex], out: torch.Tensor):
                return torch.logspace(a, b, steps=100, out=out)

        model_path = pytorch_test_dir + "/jit/fixtures/test_versioned_logspace_out_v8.ptl"
        loaded_model = torch.jit.load(model_path)
        buffer = io.BytesIO(loaded_model._save_to_buffer_for_lite_interpreter())
        buffer.seek(0)
        v8_mobile_module = _load_for_lite_interpreter(buffer)
        current_mobile_module = self._save_load_mobile_module(Module)

        sample_inputs = (
            (3, 10, torch.empty((100,), dtype=torch.int64), torch.empty((100,), dtype=torch.int64)),
            (-10, 10, torch.empty((100,), dtype=torch.int64), torch.empty((100,), dtype=torch.int64)),
            (4.0, 6.0, torch.empty((100,), dtype=torch.float64), torch.empty((100,), dtype=torch.float64)),
            (3 + 4j, 4 + 5j, torch.empty((100,), dtype=torch.complex64), torch.empty((100,), dtype=torch.complex64)),
        )
        for (start, end, out_for_old, out_for_new) in sample_inputs:
            output = v8_mobile_module(start, end, out_for_old)
            output_current = current_mobile_module(start, end, out_for_new)
            # when no step is given, should have used 100
            self.assertTrue(output.size(dim=0) == 100)
            # "Upgraded" model should match the new version output
            self.assertEqual(output, output_current)