File: test_slice.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (171 lines) | stat: -rw-r--r-- 5,270 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Owner(s): ["oncall: jit"]

import os
import sys

import torch
from typing import List

# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase

if __name__ == '__main__':
    raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
                       "\tpython test/test_jit.py TESTNAME\n\n"
                       "instead.")

# Tests that Python slice class is supported in TorchScript
class TestSlice(JitTestCase):
    def test_slice_kwarg(self):
        def slice_kwarg(x: List[int]):
            return x[slice(1, stop=2)]

        with self.assertRaisesRegex(RuntimeError, "Slice does not accept any keyword arguments"):
            torch.jit.script(slice_kwarg)

    def test_slice_three_nones(self):
        def three_nones(x: List[int]):
            return x[slice(None, None, None)]

        self.checkScript(three_nones, (range(10),))

    def test_slice_two_nones(self):
        def two_nones(x: List[int]):
            return x[slice(None, None)]

        self.checkScript(two_nones, (range(10),))

    def test_slice_one_none(self):
        def one_none(x: List[int]):
            return x[slice(None)]

        self.checkScript(one_none, (range(10),))

    def test_slice_stop_only(self):
        def fn(x: List[int]):
            return x[slice(5)]
        self.checkScript(fn, (range(10),))

    def test_slice_stop_only_with_nones(self):
        def fn(x: List[int]):
            return x[slice(None, 5, None)]
        self.checkScript(fn, (range(10),))

    def test_slice_start_stop(self):
        def fn(x: List[int]):
            return x[slice(1, 5)]

        self.checkScript(fn, (range(10),))

    def test_slice_start_stop_with_none(self):
        def fn(x: List[int]):
            return x[slice(1, 5, None)]

        self.checkScript(fn, (range(10),))

    def test_slice_start_stop_step(self):
        def fn(x: List[int]):
            return x[slice(0, 6, 2)]

        self.checkScript(fn, (range(10),))

    def test_slice_string(self):
        def fn(x: str):
            return x[slice(None, 3, 1)]

        self.checkScript(fn, ("foo_bar",))

    def test_slice_tensor(self):
        def fn(x: torch.Tensor):
            return x[slice(None, 3, 1)]

        self.checkScript(fn, (torch.ones(10),))

    def test_slice_tensor_multidim(self):
        def fn(x: torch.Tensor):
            return x[slice(None, 3, 1), 0]

        self.checkScript(fn, (torch.ones((10, 10)),))

    def test_slice_tensor_multidim_with_dots(self):
        def fn(x: torch.Tensor):
            return x[slice(None, 3, 1), ...]

        self.checkScript(fn, (torch.ones((10, 10)),))

    def test_slice_as_variable(self):
        def fn(x: List[int]):
            a = slice(1)
            return x[a]

        self.checkScript(fn, (range(10),))

    def test_slice_stop_clipped(self):
        def fn(x: List[int]):
            return x[slice(1000)]

        self.checkScript(fn, (range(10),))

    def test_slice_dynamic_index(self):
        def t(x):
            slice1 = x[0:1]
            zero = 0
            one = zero + 1
            slice2 = x[zero:one]
            return slice1 + slice2

        self.checkScript(t, (torch.zeros(3, 2, 3),))

    def test_tuple_slicing(self):
        def tuple_slice(a):
            if bool(a):
                b = (1, 2, 3, 4)
            else:
                b = (4, 3, 2, 1)
            c = b[-4:4]
            e = c[1:-1]
            return e

        self.checkScript(tuple_slice, (torch.tensor([1]),), optimize=True)
        scripted_fn = torch.jit.script(tuple_slice)
        self.assertEqual(scripted_fn(torch.tensor(1)), (2, 3))
        tuple_graph = scripted_fn.graph
        slices = tuple_graph.findAllNodes("prim::TupleConstruct")
        num_outputs = set(len(x.output().type().elements()) for x in slices)
        # there should be only one tupleSlice with length of 2
        self.assertTrue(num_outputs == {2})
        self.run_pass('lower_all_tuples', tuple_graph)
        self.assertTrue('Tuple' not in str(tuple_graph))

    def test_module_list_slicing(self):
        class Bar(torch.nn.Module):
            def __init__(self, identifier: str):
                super().__init__()
                self.identifier = identifier

            def forward(self):
                return 0

        class Foo(torch.nn.Module):
            def __init__(self):
                super().__init__()
                module_list = [Bar("A"), Bar("B"), Bar("C"), Bar("D"), Bar("E")]
                self.test = torch.nn.ModuleList(module_list)

            def forward(self):
                return self.test[::-2], self.test[1:4:]

        scripted_foo = torch.jit.script(Foo())
        result1, result2 = scripted_foo()

        self.assertEqual(len(result1), 3)
        self.assertEqual(result1[0].identifier, "E")
        self.assertEqual(result1[1].identifier, "C")
        self.assertEqual(result1[2].identifier, "A")

        self.assertEqual(len(result2), 3)
        self.assertEqual(result2[0].identifier, "B")
        self.assertEqual(result2[1].identifier, "C")
        self.assertEqual(result2[2].identifier, "D")