File: test_sparse.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (121 lines) | stat: -rw-r--r-- 3,696 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# Owner(s): ["oncall: jit"]

import io
import torch
import unittest
from torch.testing._internal.common_utils import IS_WINDOWS, TEST_MKL
from torch.testing._internal.jit_utils import JitTestCase


class TestSparse(JitTestCase):
    def test_freeze_sparse_coo(self):
        class SparseTensorModule(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.a = torch.rand(3, 4).to_sparse()
                self.b = torch.rand(3, 4).to_sparse()

            def forward(self, x):
                return x + self.a + self.b

        x = torch.rand(3, 4).to_sparse()

        m = SparseTensorModule()
        unfrozen_result = m.forward(x)

        m.eval()
        frozen = torch.jit.freeze(torch.jit.script(m))

        frozen_result = frozen.forward(x)

        self.assertEqual(unfrozen_result, frozen_result)

        buffer = io.BytesIO()
        torch.jit.save(frozen, buffer)
        buffer.seek(0)
        loaded_model = torch.jit.load(buffer)

        loaded_result = loaded_model.forward(x)

        self.assertEqual(unfrozen_result, loaded_result)

    def test_serialize_sparse_coo(self):
        class SparseTensorModule(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.a = torch.rand(3, 4).to_sparse()
                self.b = torch.rand(3, 4).to_sparse()

            def forward(self, x):
                return x + self.a + self.b

        x = torch.rand(3, 4).to_sparse()
        m = SparseTensorModule()
        expected_result = m.forward(x)

        buffer = io.BytesIO()
        torch.jit.save(torch.jit.script(m), buffer)
        buffer.seek(0)
        loaded_model = torch.jit.load(buffer)

        loaded_result = loaded_model.forward(x)

        self.assertEqual(expected_result, loaded_result)

    @unittest.skipIf(IS_WINDOWS or not TEST_MKL, "Need MKL to run CSR matmul")
    def test_freeze_sparse_csr(self):
        class SparseTensorModule(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.a = torch.rand(4, 4).to_sparse_csr()
                self.b = torch.rand(4, 4).to_sparse_csr()


            def forward(self, x):

                return x.matmul(self.a).matmul(self.b)

        x = torch.rand(4, 4).to_sparse_csr()

        m = SparseTensorModule()
        unfrozen_result = m.forward(x)

        m.eval()
        frozen = torch.jit.freeze(torch.jit.script(m))

        frozen_result = frozen.forward(x)

        self.assertEqual(unfrozen_result.to_dense(), frozen_result.to_dense())

        buffer = io.BytesIO()
        torch.jit.save(frozen, buffer)
        buffer.seek(0)
        loaded_model = torch.jit.load(buffer)

        loaded_result = loaded_model.forward(x)

        self.assertEqual(unfrozen_result.to_dense(), loaded_result.to_dense())

    @unittest.skipIf(IS_WINDOWS or not TEST_MKL, "Need MKL to run CSR matmul")
    def test_serialize_sparse_csr(self):
        class SparseTensorModule(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.a = torch.rand(4, 4).to_sparse_csr()
                self.b = torch.rand(4, 4).to_sparse_csr()

            def forward(self, x):
                return x.matmul(self.a).matmul(self.b)

        x = torch.rand(4, 4).to_sparse_csr()
        m = SparseTensorModule()
        expected_result = m.forward(x)

        buffer = io.BytesIO()
        torch.jit.save(torch.jit.script(m), buffer)
        buffer.seek(0)
        loaded_model = torch.jit.load(buffer)

        loaded_result = loaded_model.forward(x)

        self.assertEqual(expected_result.to_dense(), loaded_result.to_dense())