1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
|
# Owner(s): ["oncall: jit"]
import operator
import unittest
from textwrap import dedent
import torch
from torch import nn
from torch.testing import FileCheck
from torch.testing._internal.common_methods_invocations import sample_inputs_cat_concat
from torch.testing._internal.common_utils import make_tensor
from torch.testing._internal.jit_utils import JitTestCase, execWrapper
from typing import List, Any
if __name__ == '__main__':
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead.")
# XXX: still in prototype
class TestSymbolicShapeAnalysis(JitTestCase):
def setUp(self):
self.prev_symbolic_shapes_test_enabled = torch._C._jit_symbolic_shapes_test_mode_enabled()
torch._C._jit_set_symbolic_shapes_test_mode(True)
def tearDown(self):
torch._C._jit_set_symbolic_shapes_test_mode(self.prev_symbolic_shapes_test_enabled)
def test_shape_analysis(self):
@torch.jit.script
def foo(x, y):
return x * y
inputs = list(foo.graph.inputs())
def prop_shapes_on_graph(inp0, inp1):
inputs[0].setType(inputs[0].type().with_sizes(inp0))
inputs[1].setType(inputs[1].type().with_sizes(inp1))
torch._C._jit_pass_propagate_shapes_on_graph(foo.graph)
prop_shapes_on_graph([1, 6, 5], [1, 7, 1, 5])
FileCheck().check("1, 7, 6, 5").run(foo.graph)
# None implicitly creates a new symbolic symbol
prop_shapes_on_graph([None, None], [None, None, None])
output_shape = foo.graph.findNode("aten::mul").output().type().symbolic_sizes()
inp0_shape = inputs[0].type().symbolic_sizes()
inp1_shape = inputs[1].type().symbolic_sizes()
# output shape dim 0 should be taken from the second inp dim0
# other two dims we cannot infer and are given a new symbolic shape
self.assertEqual(output_shape[0], inp1_shape[0])
self.assertFalse(output_shape[1] in inp0_shape + inp1_shape)
self.assertFalse(output_shape[2] in inp0_shape + inp1_shape)
# XXX: symbolic shapes are represented with an increasing counter of unique
# values, use `_new_symbolic_shape_symbol` api instead of specifying negative
# dimensions directly so there is no chance of collision between manual number
# and current counter value.
sym1 = torch._C._new_symbolic_shape_symbol()
sym2 = torch._C._new_symbolic_shape_symbol()
sym3 = torch._C._new_symbolic_shape_symbol()
prop_shapes_on_graph([sym1, 1, sym3], [1, sym2, sym3])
output_shape = foo.graph.findNode("aten::mul").output().type().symbolic_sizes()
self.assertEqual(output_shape[0], sym1)
self.assertEqual(output_shape[1], sym2)
self.assertEqual(output_shape[2], sym3)
def test_shared_shape_graph(self):
@torch.jit.script
def foo(x, y):
return x * y, x / y
mul_node = foo.graph.findNode("aten::mul")
div_node = foo.graph.findNode("aten::div")
mul_graph = torch._C._jit_shape_compute_graph_for_node(mul_node)
div_graph = torch._C._jit_shape_compute_graph_for_node(div_node)
self.assertIsNotNone(mul_graph)
self.assertIs(mul_graph, div_graph)
def test_write(self):
@torch.jit.script
def foo(a, b):
return a * b
# broadcast appends cant be removed, so we bail on propagation
torch._C._jit_pass_propagate_shapes_on_graph(foo.graph)
FileCheck().check("Tensor = aten::mul").run(foo.graph)
@torch.jit.script
def foo(y):
x = [1, 2, 3, 4]
x[0] = 5
return y.view(x)
torch._C._jit_pass_propagate_shapes_on_graph(foo.graph)
FileCheck().check("Tensor = aten::view").run(foo.graph)
def test_if_propagation(self):
@torch.jit.script
def foo(i: int, z):
x = torch.ones([2, 3, 4, 5])
y = z.view([z.size(i), 3, 2, z.size(i)])
if i == 4:
return x
else:
return y
torch._C._jit_pass_constant_propagation(foo.graph)
torch._C._jit_pass_propagate_shapes_on_graph(foo.graph)
view = foo.graph.findNode("aten::view")
def neg_to_one(li):
return [elem if elem >= 0 else -1 for elem in li]
self.assertEqual(neg_to_one(view.output().type().symbolic_sizes()), [-1, 3, 2, -1])
if_out = next(foo.graph.findNode("prim::If").outputs())
self.assertEqual(neg_to_one(if_out.type().symbolic_sizes()), [-1, 3, -1, -1])
def test_unary_shape_functions(self):
unary_ops = [
torch.nn.functional.hardtanh,
]
for fn in unary_ops:
t = torch.jit.trace(fn, (torch.rand([4, 4])))
ten_input = next(t.graph.inputs())
ten_input.setType(ten_input.type().with_sizes([2, 2]))
torch._C._jit_pass_propagate_shapes_on_graph(t.graph)
self.assertEqual(next(t.graph.outputs()).type().symbolic_sizes(), [2, 2])
def test_unary_shape_fns_inplace(self):
def mul_inplace(x: torch.Tensor):
y = x.mul_(2)
return y
unary_ops = [
mul_inplace
]
for fn in unary_ops:
# t = torch.jit.trace(fn, torch.rand([4, 4])) # For some reason tracing is erroring out.
t = torch.jit.script(fn)
ten_input = next(t.graph.inputs())
ten_input.setType(ten_input.type().with_sizes([2, 2]))
torch._C._jit_pass_propagate_shapes_on_graph(t.graph)
self.assertEqual(next(t.graph.outputs()).type().symbolic_sizes(), [2, 2])
def test_binary_shape_functions(self):
binary_ops = [
operator.__mul__,
operator.__truediv__,
operator.__gt__,
operator.__add__,
]
for fn in binary_ops:
size_1 = [1, 4, 8]
size_2 = [4, 1, 8]
t = torch.jit.trace(fn, (torch.rand([4]), torch.rand([4])))
inputs = list(t.graph.inputs())
inputs[0].setType(inputs[0].type().with_sizes(size_1))
inputs[1].setType(inputs[1].type().with_sizes(size_2))
torch._C._jit_pass_propagate_shapes_on_graph(t.graph)
self.assertEqual(next(t.graph.outputs()).type().symbolic_sizes(), [4, 4, 8])
break
def test_binary_shape_fns_inplace(self):
def div_inplace_tensor(x: torch.Tensor, y: torch.Tensor):
z = x.div_(y)
return z
def add_inplace_tensor(x: torch.Tensor, y: torch.Tensor):
z = x.add_(y)
return z
binary_ops = [
div_inplace_tensor,
add_inplace_tensor,
]
for fn in binary_ops:
size_1 = [4, 4, 8] # x (can't broadcast because it's an inplace op)
t = torch.jit.script(fn)
inputs = list(t.graph.inputs())
inputs[0].setType(inputs[0].type().with_sizes(size_1))
# Intentionally not populate the type of inputs[1]
torch._C._jit_pass_propagate_shapes_on_graph(t.graph)
self.assertEqual(next(t.graph.outputs()).type().symbolic_sizes(), [4, 4, 8])
def test_size_and_sizes(self):
@torch.jit.script
def foo(x, y):
return x.view(y.size(0), 8, y.size(-1))
@torch.jit.script
def foo2(x, y):
return x.view(y.size())
for graph in [foo.graph, foo2.graph]:
inputs = list(graph.inputs())
sym1 = torch._C._new_symbolic_shape_symbol()
inputs[1].setType(inputs[1].type().with_sizes([5, 8, sym1]))
torch._C._jit_pass_propagate_shapes_on_graph(graph)
self.assertEqual(next(graph.outputs()).type().symbolic_sizes(), [5, 8, sym1])
def test_adaptive_avg_pool2d(self):
inps = [
[(1, 64, 8, 9), (5, 7)],
[(1, 64, 10, 9), (7)],
[(1, 64, 10, 9), (5, None)],
[(1, 8, 4, 3), (None, None)],
[(1, 8, 4, 3), (None, 5)],
]
for inp in inps:
t = torch.randn(*inp[0])
out_size = torch.nn.functional.adaptive_avg_pool2d(t, inp[1]).size()
def foo(x):
return torch.nn.functional.adaptive_avg_pool2d(x, inp[1])
fn = torch.jit.trace(foo, (t,))
torch._C._jit_erase_non_input_shape_information(fn.graph)
torch._C._jit_pass_peephole(fn.graph)
torch._C._jit_pass_constant_propagation(fn.graph)
self.checkShapeAnalysis(out_size, fn.graph, assert_propagation=True)
def test_arange_shape(self):
# no opinfo for tensor constructors
inps = [
(10,),
(10, 10),
(0, 10),
(0, 1000),
(1, -1, -1),
(1, 0, -1),
(1, 2, 1),
(0.6, 0.89, 0.1),
(1, 10, 0.3),
(1, 10, 4),
(0.6, 0.7, 0.8),
(1, 10, 0.3),
# (True,), TODO: https://github.com/pytorch/pytorch/issues/63405
# (False,), TODO: https://github.com/pytorch/pytorch/issues/63405
(0, 5),
(0, 5, 2),
(0, 5 + 1e-6),
(0, 5 - 1e-6),
(10, -1 + 1e-6, -1),
(10, -1, -1),
(10, -1 - 1e-6, -1),
]
for inp in inps:
funcs_template = dedent('''
def func():
return torch.arange({args})
''')
inp_s = str(inp)[1:-1] # remove tuple parens
funcs_str = funcs_template.format(args=inp_s)
scope = {}
execWrapper(funcs_str, globals(), scope)
cu = torch.jit.CompilationUnit(funcs_str)
self.checkShapeAnalysis(list(cu.func().size()), cu.func.graph, assert_propagation=True, constant_prop=False)
def test_shape_embedding_bag(self):
# TODO: merge into opinfos, having difficulties there
with torch.no_grad():
def make_arg(shape, low=None, high=None):
return make_tensor(shape, device='cpu', dtype=torch.int64,
low=low, high=high, requires_grad=False)
nn_inps = (
(make_arg((40,), 0, 9), torch.nn.Embedding(20, embedding_dim=64, max_norm=1.0)),
(make_arg((2, 4), 0, 9), torch.nn.Embedding(10, 20, sparse=True)),
(make_arg((0,)), torch.nn.Embedding(0, 0, sparse=True)),
(make_arg((2, 4), 0, 9), torch.nn.Embedding(10, 0, sparse=True)),
(make_arg((4,), 0, 21), torch.nn.Embedding(22, 5, max_norm=1.0)),
(make_arg((2,), 0, 1), torch.nn.Embedding.from_pretrained(torch.arange(6.).view(2, 3), max_norm=2.,
norm_type=.5, scale_grad_by_freq=False, sparse=True)),
)
for inp, module in nn_inps:
kwargs = {
"weight": module.weight.detach(),
"padding_idx": module.padding_idx,
"max_norm": module.max_norm,
"norm_type": module.norm_type,
"scale_grad_by_freq": module.scale_grad_by_freq,
"sparse": module.sparse,
}
out_size = torch.nn.functional.embedding(inp, **kwargs).size()
def foo(x):
return torch.nn.functional.embedding(inp, **kwargs)
fn = torch.jit.trace(foo, (inp.detach(),), check_trace=False)
self.checkShapeAnalysis(out_size, fn.graph, assert_propagation=True, constant_prop=False)
def test_shape_concat(self):
# TODO: unify with opinfo tests, traces of lists dont preserve sizes in IR
sample_inputs = sample_inputs_cat_concat(None, "cpu", torch.float, False)
class CatMod(nn.Module):
__constants__ = ['dim']
def __init__(self, dim=0):
super(CatMod, self).__init__()
self.dim = dim
def forward(self, x, y):
return torch.cat([x, y], dim=self.dim)
for inp in sample_inputs:
mod = torch.jit.script(CatMod(**inp.kwargs).eval())
args = inp.input
self.assertTrue(len(args) == 2)
out_size = mod(*args).size()
inps = list(mod.graph.inputs())
inps[1].setType(inps[1].type().with_sizes(args[0].size()))
inps[2].setType(inps[2].type().with_sizes(args[1].size()))
self.checkShapeAnalysis(out_size, mod.graph, assert_propagation=True)
def assert_shape_equal_scripted(self, script_fn, given_ins):
expected_res = script_fn(*given_ins)
g = script_fn.graph
graph_ins = list(g.inputs())
self.assertEqual(len(given_ins), len(graph_ins))
for inp, graph_in in zip(given_ins, graph_ins):
graph_in.setType(graph_in.type().with_sizes(inp.size()))
out_sizes = [out.size() for out in expected_res]
self.checkShapeAnalysis(out_sizes, g, assert_propagation=True)
def test_convolution_backward(self):
# No opinfos for ops that are not part of the Python API
# Also, as the return shapes are the input, weight, and bias shape, there is no point
# in a really complicated test
input = torch.randn((16, 16, 8, 8), dtype=torch.float32, device="cpu", requires_grad=True)
weight = torch.randn((8, 4, 3, 3), dtype=torch.float32, device="cpu", requires_grad=True)
out_grad = torch.randn((16, 8, 8, 8), dtype=torch.float32, device="cpu")
@torch.jit.script
def conv_bwd(input, weight, grad):
bias_sizes = [8, ]
args = ([1, 1], [1, 1], [1, 1], False, [0, 0], 4, [True, True, True])
return torch.ops.aten.convolution_backward(grad, input, weight, bias_sizes, *args)
self.assert_shape_equal_scripted(conv_bwd, (input, weight, out_grad))
@torch.jit.script
def conv_bwd_2(input, weight, grad):
bias_sizes = None
args = ([1, 1], [1, 1], [1, 1], False, [0, 0], 4, [True, True, True])
return torch.ops.aten.convolution_backward(grad, input, weight, bias_sizes, *args)
self.assert_shape_equal_scripted(conv_bwd_2, (input, weight, out_grad))
def test_returning_input_symbolic_shapes(self):
mm = torch.jit.freeze(torch.jit.script(nn.Conv2d(16, 33, 3, stride=2).eval()))
inps = list(mm.graph.inputs())
inps[1].setType(inps[1].type().with_sizes([None, None, None, None]))
shape_compute_graph = torch._C._jit_pass_propagate_shapes_on_graph_and_build_compute(mm.graph)
g = shape_compute_graph.partial_eval_shape_graph()
# to make into a jit function cant have multiple outputs
g.makeMultiOutputIntoTuple()
func = torch._C._create_function_from_graph("partial_eval_graph", g)
out = func([20, 16, 5, 10])
# first four outputs should be unknown symbolic shapes from input
self.assertEqual(out[0:4], [20, 16, 5, 10])
# last two are two new symbolic dims - height and width
self.assertEqual(out[4:], list(mm(torch.rand([20, 16, 5, 10])).size()[2:]))
def test_partial_eval_graph_conv(self):
mm = torch.jit.freeze(torch.jit.script(nn.Conv2d(16, 33, 3, stride=2).eval()))
shape_compute_graph = torch._C._jit_pass_propagate_shapes_on_graph_and_build_compute(mm.graph)
output_sizes = mm.graph.findNode("aten::conv2d").output().type().symbolic_sizes()
# calculating 0, 2 and 3 index
for i in [0, 2, 3]:
self.assertTrue(output_sizes[i] < 0)
self.assertTrue(output_sizes[1] >= 0)
g = shape_compute_graph.partial_eval_shape_graph()
# to make into a jit function cant have multiple outputs
g.makeMultiOutputIntoTuple()
func = torch._C._create_function_from_graph("partial_eval_graph", g)
inp = torch.randn(20, 16, 5, 10)
output = func([20, 16, 5, 10])
output_eager = list(mm(inp).size())
for o, oe in zip(output, output_eager[0:1] + output_eager[2:]):
self.assertEqual(o, oe)
def checkSymShapeCompute(self, shape_compute_graph, nodes, node_output_sizes, shape_inputs):
g = shape_compute_graph.partial_eval_shape_graph()
self.assertTrue(len(list(g.inputs())) == len(shape_inputs))
output_sym_map = shape_compute_graph.graph_output_to_symbolic_shape_dim()
# map from sym shape -> index
sym_shape_to_index = {}
for index, output in enumerate(g.outputs()):
sym_shape_to_index[output_sym_map[output]] = index
g.makeMultiOutputIntoTuple()
func = torch._C._create_function_from_graph("partial_eval_graph", g)
sym_outputs = func(*shape_inputs)
for node, output_shape in zip(nodes, node_output_sizes):
output_type_sizes = node.output().type().symbolic_sizes()
for i, sym_shape in enumerate(output_type_sizes):
if sym_shape >= 0:
self.assertEqual(sym_shape, output_shape[i])
else:
sym_shape_index = sym_shape_to_index[sym_shape]
self.assertEqual(sym_outputs[sym_shape_index], output_shape[i])
def test_partial_eval_stitching(self):
conv1 = torch.nn.Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
max_pool = torch.nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
conv2 = nn.Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
mod = torch.jit.freeze(torch.jit.script(nn.Sequential(conv1, max_pool, conv2).eval()))
conv1_output = conv1(torch.rand(1, 3, 224, 224))
max_pool_output = max_pool(conv1_output)
conv2_output = conv2(max_pool_output)
shape_compute_graph = torch._C._jit_pass_propagate_shapes_on_graph_and_build_compute(mod.graph)
nodes = [mod.graph.findNode("aten::max_pool2d")] + list(mod.graph.findAllNodes("aten::conv2d"))
output_shapes = [max_pool_output.size(), conv1_output.size(), conv2_output.size()]
self.checkSymShapeCompute(shape_compute_graph, nodes, output_shapes, ([1, 3, 224, 224],))
def test_refinement_through_graph_stitching(self):
class TwoConvs(torch.nn.Module):
def __init__(self):
super(TwoConvs, self).__init__()
self.conv1 = torch.nn.Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
self.conv2 = torch.nn.Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
def forward(self, x):
a = self.conv1(x)
b = self.conv2(x)
return a + b
mod = torch.jit.freeze(torch.jit.script(TwoConvs()).eval())
inp_tensor = list(mod.graph.inputs())[1]
inp_tensor.setType(inp_tensor.type().with_sizes([None, None, None, None]))
torch._C._jit_pass_propagate_shapes_on_graph(mod.graph)
outs = list(next(mod.graph.outputs()).node().inputs())
out1 = outs[0].type().symbolic_sizes()
out2 = outs[1].type().symbolic_sizes()
self.assertTrue(out1[2] != out2[2])
self.assertTrue(out1[3] != out2[3])
# by joining partial eval graphs of both convs we are able to recognize the output shapes
# are equivalent
torch._C._jit_pass_propagate_shapes_on_graph_and_build_compute(mod.graph)
out1 = outs[0].type().symbolic_sizes()
out2 = outs[1].type().symbolic_sizes()
self.assertEqual(out1, out2)
def test_stitching_multi_output(self):
max_pool = torch.nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False, return_indices=True)
tensor = torch.rand(1, 3, 224, 224)
mod = torch.jit.trace(max_pool, (tensor,))
mod = torch.jit.freeze(mod.eval())
inp = list(mod.graph.inputs())[1]
inp.setType(inp.type().with_sizes([None, None, None, None]))
output_tensor = list(mod(tensor)[0].size())
self.run_pass('lower_all_tuples', mod.graph)
shape_compute_graph = torch._C._jit_pass_propagate_shapes_on_graph_and_build_compute(mod.graph)
max_pool_node = mod.graph.findNode("aten::max_pool2d_with_indices")
outs = list(max_pool_node.outputs())
self.assertEqual(outs[0].type().symbolic_sizes(), outs[1].type().symbolic_sizes())
g = shape_compute_graph.partial_eval_shape_graph()
# to make into a jit function cant have multiple outputs
g.makeMultiOutputIntoTuple()
func = torch._C._create_function_from_graph("partial_eval_graph", g)
mapping = shape_compute_graph.graph_output_to_symbolic_shape_dim()
output_shape = func(tensor.size())
# the first 4 dims are input sym dimensions, then the ,
self.assertEqual(list(output_shape[0:4]), list(tensor.size()))
self.assertEqual(list(output_shape[4:]), output_tensor[2:])
def test_sym_ir_parsing(self):
graph_str1 = """graph(%x.1 : Float(SS(-2), SS(-3))):
%3 : int = prim::Constant[value=1]()
%4 : Tensor = aten::add(%x.1, %x.1, %3)
return (%4)"""
g = torch._C.parse_ir(graph_str1)
inp = next(g.inputs())
out = inp.type().symbolic_sizes()
self.assertEqual(out, [-2, -3])
def test_stitching_concat(self):
@torch.jit.script
def foo1(a, b, x, y):
return (a / b) + torch.cat([x, y])
@torch.jit.script
def foo2(a, b, x, y):
return (a / b) + torch.cat([x, y], dim=-2)
for foo in [foo1, foo2]:
g = foo.graph
for inp in foo.graph.inputs():
inp.setType(inp.type().with_sizes([None, None]))
shape_compute_graph = torch._C._jit_pass_propagate_shapes_on_graph_and_build_compute(foo.graph)
nodes = [g.findNode("aten::div")] + [g.findNode("aten::add")] + [g.findNode("aten::cat")]
inps = [1, 10], [20, 10], [15, 1], [5, 1]
output_shapes = [[20, 10], [20, 10], [20, 1]]
self.checkSymShapeCompute(shape_compute_graph, nodes, output_shapes, inps)
@unittest.skipIf(not hasattr(torch.jit, "_shapes"), "shape functions not loaded in python")
def test_shape_function_includes(self):
inp_shape = [1, 16, 5, 10]
weight_shape = [33, 16, 3, 3]
bias = None
stride = [2, 2]
padding = [0, 0]
dilation = [1, 1]
groups = 1
res = torch.jit._shapes.conv2d(inp_shape, weight_shape, bias, stride, padding, dilation, groups)
self.assertEqual(res, [1, 33, 2, 4])
m1_shape = [10, 20]
m2_shape = [20, 10]
res = torch.jit._shapes.matmul(m1_shape, m2_shape)
self.assertEqual(res, [10, 10])
def test_register_function_error_checking(self):
# this will error before registering on global map, so
# no issue in overwriting schema mappings
@torch.jit.script
def foo(x, y):
return x + y
node = foo.graph.findNode("aten::add")
@torch.jit.script
def wrong_input_types(x, y):
x: List[int] = []
return x
with self.assertRaisesRegex(RuntimeError, "Expected supertype of int"):
torch._C._jit_register_shape_compute_graph_for_node(node, wrong_input_types.graph)
@torch.jit.script
def wrong_output_types(x: List[int], y: List[int]):
x: List[Tensor] = []
return x
with self.assertRaisesRegex(RuntimeError, "but got graph_type"):
torch._C._jit_register_shape_compute_graph_for_node(node, wrong_output_types.graph)
@torch.jit.script
def too_many_inputs(x: List[int], y: List[int], z: Any, z2: Any):
x: List[int] = []
return x
with self.assertRaises(RuntimeError) as error:
torch._C._jit_register_shape_compute_graph_for_node(node, too_many_inputs.graph)
self.assertTrue("fewer arguments than schema" in str(error.exception))
|