File: test_symbolic_shape_analysis.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (570 lines) | stat: -rw-r--r-- 24,445 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
# Owner(s): ["oncall: jit"]

import operator
import unittest
from textwrap import dedent

import torch
from torch import nn
from torch.testing import FileCheck
from torch.testing._internal.common_methods_invocations import sample_inputs_cat_concat
from torch.testing._internal.common_utils import make_tensor
from torch.testing._internal.jit_utils import JitTestCase, execWrapper
from typing import List, Any

if __name__ == '__main__':
    raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
                       "\tpython test/test_jit.py TESTNAME\n\n"
                       "instead.")

# XXX: still in prototype
class TestSymbolicShapeAnalysis(JitTestCase):
    def setUp(self):
        self.prev_symbolic_shapes_test_enabled = torch._C._jit_symbolic_shapes_test_mode_enabled()
        torch._C._jit_set_symbolic_shapes_test_mode(True)

    def tearDown(self):
        torch._C._jit_set_symbolic_shapes_test_mode(self.prev_symbolic_shapes_test_enabled)

    def test_shape_analysis(self):
        @torch.jit.script
        def foo(x, y):
            return x * y

        inputs = list(foo.graph.inputs())

        def prop_shapes_on_graph(inp0, inp1):
            inputs[0].setType(inputs[0].type().with_sizes(inp0))
            inputs[1].setType(inputs[1].type().with_sizes(inp1))
            torch._C._jit_pass_propagate_shapes_on_graph(foo.graph)

        prop_shapes_on_graph([1, 6, 5], [1, 7, 1, 5])
        FileCheck().check("1, 7, 6, 5").run(foo.graph)

        # None implicitly creates a new symbolic symbol
        prop_shapes_on_graph([None, None], [None, None, None])
        output_shape = foo.graph.findNode("aten::mul").output().type().symbolic_sizes()
        inp0_shape = inputs[0].type().symbolic_sizes()
        inp1_shape = inputs[1].type().symbolic_sizes()

        # output shape dim 0 should be taken from the second inp dim0
        # other two dims we cannot infer and are given a new symbolic shape
        self.assertEqual(output_shape[0], inp1_shape[0])
        self.assertFalse(output_shape[1] in inp0_shape + inp1_shape)
        self.assertFalse(output_shape[2] in inp0_shape + inp1_shape)

        # XXX: symbolic shapes are represented with an increasing counter of unique
        # values, use `_new_symbolic_shape_symbol` api instead of specifying negative
        # dimensions directly so there is no chance of collision between manual number
        # and current counter value.
        sym1 = torch._C._new_symbolic_shape_symbol()
        sym2 = torch._C._new_symbolic_shape_symbol()
        sym3 = torch._C._new_symbolic_shape_symbol()
        prop_shapes_on_graph([sym1, 1, sym3], [1, sym2, sym3])
        output_shape = foo.graph.findNode("aten::mul").output().type().symbolic_sizes()
        self.assertEqual(output_shape[0], sym1)
        self.assertEqual(output_shape[1], sym2)
        self.assertEqual(output_shape[2], sym3)

    def test_shared_shape_graph(self):
        @torch.jit.script
        def foo(x, y):
            return x * y, x / y

        mul_node = foo.graph.findNode("aten::mul")
        div_node = foo.graph.findNode("aten::div")

        mul_graph = torch._C._jit_shape_compute_graph_for_node(mul_node)
        div_graph = torch._C._jit_shape_compute_graph_for_node(div_node)
        self.assertIsNotNone(mul_graph)
        self.assertIs(mul_graph, div_graph)

    def test_write(self):
        @torch.jit.script
        def foo(a, b):
            return a * b

        # broadcast appends cant be removed, so we bail on propagation
        torch._C._jit_pass_propagate_shapes_on_graph(foo.graph)
        FileCheck().check("Tensor = aten::mul").run(foo.graph)

        @torch.jit.script
        def foo(y):
            x = [1, 2, 3, 4]
            x[0] = 5
            return y.view(x)

        torch._C._jit_pass_propagate_shapes_on_graph(foo.graph)
        FileCheck().check("Tensor = aten::view").run(foo.graph)

    def test_if_propagation(self):
        @torch.jit.script
        def foo(i: int, z):
            x = torch.ones([2, 3, 4, 5])
            y = z.view([z.size(i), 3, 2, z.size(i)])
            if i == 4:
                return x
            else:
                return y

        torch._C._jit_pass_constant_propagation(foo.graph)
        torch._C._jit_pass_propagate_shapes_on_graph(foo.graph)
        view = foo.graph.findNode("aten::view")

        def neg_to_one(li):
            return [elem if elem >= 0 else -1 for elem in li]

        self.assertEqual(neg_to_one(view.output().type().symbolic_sizes()), [-1, 3, 2, -1])
        if_out = next(foo.graph.findNode("prim::If").outputs())
        self.assertEqual(neg_to_one(if_out.type().symbolic_sizes()), [-1, 3, -1, -1])

    def test_unary_shape_functions(self):
        unary_ops = [
            torch.nn.functional.hardtanh,
        ]
        for fn in unary_ops:
            t = torch.jit.trace(fn, (torch.rand([4, 4])))
            ten_input = next(t.graph.inputs())
            ten_input.setType(ten_input.type().with_sizes([2, 2]))
            torch._C._jit_pass_propagate_shapes_on_graph(t.graph)
            self.assertEqual(next(t.graph.outputs()).type().symbolic_sizes(), [2, 2])

    def test_unary_shape_fns_inplace(self):
        def mul_inplace(x: torch.Tensor):
            y = x.mul_(2)
            return y

        unary_ops = [
            mul_inplace
        ]
        for fn in unary_ops:
            # t = torch.jit.trace(fn, torch.rand([4, 4]))  # For some reason tracing is erroring out.
            t = torch.jit.script(fn)
            ten_input = next(t.graph.inputs())
            ten_input.setType(ten_input.type().with_sizes([2, 2]))
            torch._C._jit_pass_propagate_shapes_on_graph(t.graph)
            self.assertEqual(next(t.graph.outputs()).type().symbolic_sizes(), [2, 2])

    def test_binary_shape_functions(self):
        binary_ops = [
            operator.__mul__,
            operator.__truediv__,
            operator.__gt__,
            operator.__add__,
        ]

        for fn in binary_ops:
            size_1 = [1, 4, 8]
            size_2 = [4, 1, 8]
            t = torch.jit.trace(fn, (torch.rand([4]), torch.rand([4])))
            inputs = list(t.graph.inputs())
            inputs[0].setType(inputs[0].type().with_sizes(size_1))
            inputs[1].setType(inputs[1].type().with_sizes(size_2))
            torch._C._jit_pass_propagate_shapes_on_graph(t.graph)
            self.assertEqual(next(t.graph.outputs()).type().symbolic_sizes(), [4, 4, 8])
            break

    def test_binary_shape_fns_inplace(self):
        def div_inplace_tensor(x: torch.Tensor, y: torch.Tensor):
            z = x.div_(y)
            return z

        def add_inplace_tensor(x: torch.Tensor, y: torch.Tensor):
            z = x.add_(y)
            return z

        binary_ops = [
            div_inplace_tensor,
            add_inplace_tensor,
        ]

        for fn in binary_ops:
            size_1 = [4, 4, 8]  # x (can't broadcast because it's an inplace op)
            t = torch.jit.script(fn)
            inputs = list(t.graph.inputs())
            inputs[0].setType(inputs[0].type().with_sizes(size_1))
            # Intentionally not populate the type of inputs[1]
            torch._C._jit_pass_propagate_shapes_on_graph(t.graph)
            self.assertEqual(next(t.graph.outputs()).type().symbolic_sizes(), [4, 4, 8])

    def test_size_and_sizes(self):
        @torch.jit.script
        def foo(x, y):
            return x.view(y.size(0), 8, y.size(-1))

        @torch.jit.script
        def foo2(x, y):
            return x.view(y.size())

        for graph in [foo.graph, foo2.graph]:
            inputs = list(graph.inputs())
            sym1 = torch._C._new_symbolic_shape_symbol()

            inputs[1].setType(inputs[1].type().with_sizes([5, 8, sym1]))
            torch._C._jit_pass_propagate_shapes_on_graph(graph)
            self.assertEqual(next(graph.outputs()).type().symbolic_sizes(), [5, 8, sym1])

    def test_adaptive_avg_pool2d(self):
        inps = [
            [(1, 64, 8, 9), (5, 7)],
            [(1, 64, 10, 9), (7)],
            [(1, 64, 10, 9), (5, None)],
            [(1, 8, 4, 3), (None, None)],
            [(1, 8, 4, 3), (None, 5)],
        ]

        for inp in inps:
            t = torch.randn(*inp[0])
            out_size = torch.nn.functional.adaptive_avg_pool2d(t, inp[1]).size()

            def foo(x):
                return torch.nn.functional.adaptive_avg_pool2d(x, inp[1])

            fn = torch.jit.trace(foo, (t,))
            torch._C._jit_erase_non_input_shape_information(fn.graph)
            torch._C._jit_pass_peephole(fn.graph)
            torch._C._jit_pass_constant_propagation(fn.graph)
            self.checkShapeAnalysis(out_size, fn.graph, assert_propagation=True)

    def test_arange_shape(self):
        # no opinfo for tensor constructors
        inps = [
            (10,),
            (10, 10),
            (0, 10),
            (0, 1000),
            (1, -1, -1),
            (1, 0, -1),
            (1, 2, 1),
            (0.6, 0.89, 0.1),
            (1, 10, 0.3),
            (1, 10, 4),
            (0.6, 0.7, 0.8),
            (1, 10, 0.3),
            # (True,),  TODO: https://github.com/pytorch/pytorch/issues/63405
            # (False,), TODO: https://github.com/pytorch/pytorch/issues/63405
            (0, 5),
            (0, 5, 2),
            (0, 5 + 1e-6),
            (0, 5 - 1e-6),
            (10, -1 + 1e-6, -1),
            (10, -1, -1),
            (10, -1 - 1e-6, -1),
        ]

        for inp in inps:
            funcs_template = dedent('''
            def func():
                return torch.arange({args})
            ''')

            inp_s = str(inp)[1:-1]  # remove tuple parens
            funcs_str = funcs_template.format(args=inp_s)
            scope = {}
            execWrapper(funcs_str, globals(), scope)
            cu = torch.jit.CompilationUnit(funcs_str)
            self.checkShapeAnalysis(list(cu.func().size()), cu.func.graph, assert_propagation=True, constant_prop=False)

    def test_shape_embedding_bag(self):
        # TODO: merge into opinfos, having difficulties there
        with torch.no_grad():
            def make_arg(shape, low=None, high=None):
                return make_tensor(shape, device='cpu', dtype=torch.int64,
                                   low=low, high=high, requires_grad=False)

            nn_inps = (
                (make_arg((40,), 0, 9), torch.nn.Embedding(20, embedding_dim=64, max_norm=1.0)),
                (make_arg((2, 4), 0, 9), torch.nn.Embedding(10, 20, sparse=True)),
                (make_arg((0,)), torch.nn.Embedding(0, 0, sparse=True)),
                (make_arg((2, 4), 0, 9), torch.nn.Embedding(10, 0, sparse=True)),
                (make_arg((4,), 0, 21), torch.nn.Embedding(22, 5, max_norm=1.0)),
                (make_arg((2,), 0, 1), torch.nn.Embedding.from_pretrained(torch.arange(6.).view(2, 3), max_norm=2.,
                                                                          norm_type=.5, scale_grad_by_freq=False, sparse=True)),
            )

            for inp, module in nn_inps:
                kwargs = {
                    "weight": module.weight.detach(),
                    "padding_idx": module.padding_idx,
                    "max_norm": module.max_norm,
                    "norm_type": module.norm_type,
                    "scale_grad_by_freq": module.scale_grad_by_freq,
                    "sparse": module.sparse,
                }

                out_size = torch.nn.functional.embedding(inp, **kwargs).size()

                def foo(x):
                    return torch.nn.functional.embedding(inp, **kwargs)

                fn = torch.jit.trace(foo, (inp.detach(),), check_trace=False)

                self.checkShapeAnalysis(out_size, fn.graph, assert_propagation=True, constant_prop=False)

    def test_shape_concat(self):
        # TODO: unify with opinfo tests, traces of lists dont preserve sizes in IR
        sample_inputs = sample_inputs_cat_concat(None, "cpu", torch.float, False)

        class CatMod(nn.Module):
            __constants__ = ['dim']

            def __init__(self, dim=0):
                super(CatMod, self).__init__()
                self.dim = dim

            def forward(self, x, y):
                return torch.cat([x, y], dim=self.dim)

        for inp in sample_inputs:
            mod = torch.jit.script(CatMod(**inp.kwargs).eval())

            args = inp.input
            self.assertTrue(len(args) == 2)
            out_size = mod(*args).size()
            inps = list(mod.graph.inputs())
            inps[1].setType(inps[1].type().with_sizes(args[0].size()))
            inps[2].setType(inps[2].type().with_sizes(args[1].size()))
            self.checkShapeAnalysis(out_size, mod.graph, assert_propagation=True)

    def assert_shape_equal_scripted(self, script_fn, given_ins):
        expected_res = script_fn(*given_ins)
        g = script_fn.graph
        graph_ins = list(g.inputs())
        self.assertEqual(len(given_ins), len(graph_ins))
        for inp, graph_in in zip(given_ins, graph_ins):
            graph_in.setType(graph_in.type().with_sizes(inp.size()))

        out_sizes = [out.size() for out in expected_res]
        self.checkShapeAnalysis(out_sizes, g, assert_propagation=True)

    def test_convolution_backward(self):
        # No opinfos for ops that are not part of the Python API
        # Also, as the return shapes are the input, weight, and bias shape, there is no point
        # in a really complicated test

        input = torch.randn((16, 16, 8, 8), dtype=torch.float32, device="cpu", requires_grad=True)
        weight = torch.randn((8, 4, 3, 3), dtype=torch.float32, device="cpu", requires_grad=True)
        out_grad = torch.randn((16, 8, 8, 8), dtype=torch.float32, device="cpu")


        @torch.jit.script
        def conv_bwd(input, weight, grad):
            bias_sizes = [8, ]
            args = ([1, 1], [1, 1], [1, 1], False, [0, 0], 4, [True, True, True])
            return torch.ops.aten.convolution_backward(grad, input, weight, bias_sizes, *args)

        self.assert_shape_equal_scripted(conv_bwd, (input, weight, out_grad))

        @torch.jit.script
        def conv_bwd_2(input, weight, grad):
            bias_sizes = None
            args = ([1, 1], [1, 1], [1, 1], False, [0, 0], 4, [True, True, True])
            return torch.ops.aten.convolution_backward(grad, input, weight, bias_sizes, *args)
        self.assert_shape_equal_scripted(conv_bwd_2, (input, weight, out_grad))


    def test_returning_input_symbolic_shapes(self):
        mm = torch.jit.freeze(torch.jit.script(nn.Conv2d(16, 33, 3, stride=2).eval()))
        inps = list(mm.graph.inputs())
        inps[1].setType(inps[1].type().with_sizes([None, None, None, None]))
        shape_compute_graph = torch._C._jit_pass_propagate_shapes_on_graph_and_build_compute(mm.graph)
        g = shape_compute_graph.partial_eval_shape_graph()
        # to make into a jit function cant have multiple outputs
        g.makeMultiOutputIntoTuple()
        func = torch._C._create_function_from_graph("partial_eval_graph", g)
        out = func([20, 16, 5, 10])
        # first four outputs should be unknown symbolic shapes from input
        self.assertEqual(out[0:4], [20, 16, 5, 10])
        # last two are two new symbolic dims - height and width
        self.assertEqual(out[4:], list(mm(torch.rand([20, 16, 5, 10])).size()[2:]))

    def test_partial_eval_graph_conv(self):
        mm = torch.jit.freeze(torch.jit.script(nn.Conv2d(16, 33, 3, stride=2).eval()))
        shape_compute_graph = torch._C._jit_pass_propagate_shapes_on_graph_and_build_compute(mm.graph)
        output_sizes = mm.graph.findNode("aten::conv2d").output().type().symbolic_sizes()
        # calculating 0, 2 and 3 index
        for i in [0, 2, 3]:
            self.assertTrue(output_sizes[i] < 0)
        self.assertTrue(output_sizes[1] >= 0)
        g = shape_compute_graph.partial_eval_shape_graph()
        # to make into a jit function cant have multiple outputs
        g.makeMultiOutputIntoTuple()
        func = torch._C._create_function_from_graph("partial_eval_graph", g)
        inp = torch.randn(20, 16, 5, 10)
        output = func([20, 16, 5, 10])
        output_eager = list(mm(inp).size())
        for o, oe in zip(output, output_eager[0:1] + output_eager[2:]):
            self.assertEqual(o, oe)

    def checkSymShapeCompute(self, shape_compute_graph, nodes, node_output_sizes, shape_inputs):
        g = shape_compute_graph.partial_eval_shape_graph()
        self.assertTrue(len(list(g.inputs())) == len(shape_inputs))
        output_sym_map = shape_compute_graph.graph_output_to_symbolic_shape_dim()
        # map from sym shape -> index
        sym_shape_to_index = {}
        for index, output in enumerate(g.outputs()):
            sym_shape_to_index[output_sym_map[output]] = index

        g.makeMultiOutputIntoTuple()
        func = torch._C._create_function_from_graph("partial_eval_graph", g)
        sym_outputs = func(*shape_inputs)

        for node, output_shape in zip(nodes, node_output_sizes):
            output_type_sizes = node.output().type().symbolic_sizes()
            for i, sym_shape in enumerate(output_type_sizes):
                if sym_shape >= 0:
                    self.assertEqual(sym_shape, output_shape[i])
                else:
                    sym_shape_index = sym_shape_to_index[sym_shape]
                    self.assertEqual(sym_outputs[sym_shape_index], output_shape[i])

    def test_partial_eval_stitching(self):
        conv1 = torch.nn.Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
        max_pool = torch.nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
        conv2 = nn.Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)

        mod = torch.jit.freeze(torch.jit.script(nn.Sequential(conv1, max_pool, conv2).eval()))

        conv1_output = conv1(torch.rand(1, 3, 224, 224))
        max_pool_output = max_pool(conv1_output)
        conv2_output = conv2(max_pool_output)

        shape_compute_graph = torch._C._jit_pass_propagate_shapes_on_graph_and_build_compute(mod.graph)
        nodes = [mod.graph.findNode("aten::max_pool2d")] + list(mod.graph.findAllNodes("aten::conv2d"))
        output_shapes = [max_pool_output.size(), conv1_output.size(), conv2_output.size()]
        self.checkSymShapeCompute(shape_compute_graph, nodes, output_shapes, ([1, 3, 224, 224],))

    def test_refinement_through_graph_stitching(self):
        class TwoConvs(torch.nn.Module):
            def __init__(self):
                super(TwoConvs, self).__init__()
                self.conv1 = torch.nn.Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
                self.conv2 = torch.nn.Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)

            def forward(self, x):
                a = self.conv1(x)
                b = self.conv2(x)
                return a + b

        mod = torch.jit.freeze(torch.jit.script(TwoConvs()).eval())
        inp_tensor = list(mod.graph.inputs())[1]
        inp_tensor.setType(inp_tensor.type().with_sizes([None, None, None, None]))
        torch._C._jit_pass_propagate_shapes_on_graph(mod.graph)
        outs = list(next(mod.graph.outputs()).node().inputs())
        out1 = outs[0].type().symbolic_sizes()
        out2 = outs[1].type().symbolic_sizes()
        self.assertTrue(out1[2] != out2[2])
        self.assertTrue(out1[3] != out2[3])
        # by joining partial eval graphs of both convs we are able to recognize the output shapes
        # are equivalent
        torch._C._jit_pass_propagate_shapes_on_graph_and_build_compute(mod.graph)
        out1 = outs[0].type().symbolic_sizes()
        out2 = outs[1].type().symbolic_sizes()
        self.assertEqual(out1, out2)

    def test_stitching_multi_output(self):
        max_pool = torch.nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False, return_indices=True)
        tensor = torch.rand(1, 3, 224, 224)
        mod = torch.jit.trace(max_pool, (tensor,))
        mod = torch.jit.freeze(mod.eval())
        inp = list(mod.graph.inputs())[1]
        inp.setType(inp.type().with_sizes([None, None, None, None]))
        output_tensor = list(mod(tensor)[0].size())
        self.run_pass('lower_all_tuples', mod.graph)
        shape_compute_graph = torch._C._jit_pass_propagate_shapes_on_graph_and_build_compute(mod.graph)
        max_pool_node = mod.graph.findNode("aten::max_pool2d_with_indices")
        outs = list(max_pool_node.outputs())
        self.assertEqual(outs[0].type().symbolic_sizes(), outs[1].type().symbolic_sizes())
        g = shape_compute_graph.partial_eval_shape_graph()
        # to make into a jit function cant have multiple outputs
        g.makeMultiOutputIntoTuple()
        func = torch._C._create_function_from_graph("partial_eval_graph", g)
        mapping = shape_compute_graph.graph_output_to_symbolic_shape_dim()
        output_shape = func(tensor.size())
        # the first 4 dims are input sym dimensions, then the ,
        self.assertEqual(list(output_shape[0:4]), list(tensor.size()))
        self.assertEqual(list(output_shape[4:]), output_tensor[2:])

    def test_sym_ir_parsing(self):
        graph_str1 = """graph(%x.1 : Float(SS(-2), SS(-3))):
                        %3 : int = prim::Constant[value=1]()
                        %4 : Tensor = aten::add(%x.1, %x.1, %3)
                        return (%4)"""
        g = torch._C.parse_ir(graph_str1)
        inp = next(g.inputs())
        out = inp.type().symbolic_sizes()
        self.assertEqual(out, [-2, -3])

    def test_stitching_concat(self):

        @torch.jit.script
        def foo1(a, b, x, y):
            return (a / b) + torch.cat([x, y])

        @torch.jit.script
        def foo2(a, b, x, y):
            return (a / b) + torch.cat([x, y], dim=-2)

        for foo in [foo1, foo2]:
            g = foo.graph
            for inp in foo.graph.inputs():
                inp.setType(inp.type().with_sizes([None, None]))

            shape_compute_graph = torch._C._jit_pass_propagate_shapes_on_graph_and_build_compute(foo.graph)
            nodes = [g.findNode("aten::div")] + [g.findNode("aten::add")] + [g.findNode("aten::cat")]

            inps = [1, 10], [20, 10], [15, 1], [5, 1]
            output_shapes = [[20, 10], [20, 10], [20, 1]]

            self.checkSymShapeCompute(shape_compute_graph, nodes, output_shapes, inps)

    @unittest.skipIf(not hasattr(torch.jit, "_shapes"), "shape functions not loaded in python")
    def test_shape_function_includes(self):
        inp_shape = [1, 16, 5, 10]
        weight_shape = [33, 16, 3, 3]
        bias = None
        stride = [2, 2]
        padding = [0, 0]
        dilation = [1, 1]
        groups = 1
        res = torch.jit._shapes.conv2d(inp_shape, weight_shape, bias, stride, padding, dilation, groups)
        self.assertEqual(res, [1, 33, 2, 4])

        m1_shape = [10, 20]
        m2_shape = [20, 10]
        res = torch.jit._shapes.matmul(m1_shape, m2_shape)
        self.assertEqual(res, [10, 10])

    def test_register_function_error_checking(self):
        # this will error before registering on global map, so
        # no issue in overwriting schema mappings
        @torch.jit.script
        def foo(x, y):
            return x + y

        node = foo.graph.findNode("aten::add")

        @torch.jit.script
        def wrong_input_types(x, y):
            x: List[int] = []
            return x
        with self.assertRaisesRegex(RuntimeError, "Expected supertype of int"):
            torch._C._jit_register_shape_compute_graph_for_node(node, wrong_input_types.graph)

        @torch.jit.script
        def wrong_output_types(x: List[int], y: List[int]):
            x: List[Tensor] = []
            return x

        with self.assertRaisesRegex(RuntimeError, "but got graph_type"):
            torch._C._jit_register_shape_compute_graph_for_node(node, wrong_output_types.graph)

        @torch.jit.script
        def too_many_inputs(x: List[int], y: List[int], z: Any, z2: Any):
            x: List[int] = []
            return x

        with self.assertRaises(RuntimeError) as error:
            torch._C._jit_register_shape_compute_graph_for_node(node, too_many_inputs.graph)

        self.assertTrue("fewer arguments than schema" in str(error.exception))