File: test_tensor_creation_ops.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (75 lines) | stat: -rw-r--r-- 2,993 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Owner(s): ["oncall: jit"]

import os
import sys

import torch

# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase

if __name__ == '__main__':
    raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
                       "\tpython test/test_jit.py TESTNAME\n\n"
                       "instead.")

class TestTensorCreationOps(JitTestCase):
    """
    A suite of tests for ops that create tensors.
    """

    def test_randperm_default_dtype(self):
        def randperm(x: int):
            perm = torch.randperm(x)
            # Have to perform assertion here because TorchScript returns dtypes
            # as integers, which are not comparable against eager torch.dtype.
            assert perm.dtype == torch.int64

        self.checkScript(randperm, (3, ))

    def test_randperm_specifed_dtype(self):
        def randperm(x: int):
            perm = torch.randperm(x, dtype=torch.float)
            # Have to perform assertion here because TorchScript returns dtypes
            # as integers, which are not comparable against eager torch.dtype.
            assert perm.dtype == torch.float

        self.checkScript(randperm, (3, ))

    def test_triu_indices_default_dtype(self):
        def triu_indices(rows: int, cols: int):
            indices = torch.triu_indices(rows, cols)
            # Have to perform assertion here because TorchScript returns dtypes
            # as integers, which are not comparable against eager torch.dtype.
            assert indices.dtype == torch.int64

        self.checkScript(triu_indices, (3, 3))

    def test_triu_indices_specified_dtype(self):
        def triu_indices(rows: int, cols: int):
            indices = torch.triu_indices(rows, cols, dtype=torch.int32)
            # Have to perform assertion here because TorchScript returns dtypes
            # as integers, which are not comparable against eager torch.dtype.
            assert indices.dtype == torch.int32

        self.checkScript(triu_indices, (3, 3))

    def test_tril_indices_default_dtype(self):
        def tril_indices(rows: int, cols: int):
            indices = torch.tril_indices(rows, cols)
            # Have to perform assertion here because TorchScript returns dtypes
            # as integers, which are not comparable against eager torch.dtype.
            assert indices.dtype == torch.int64

        self.checkScript(tril_indices, (3, 3))

    def test_tril_indices_specified_dtype(self):
        def tril_indices(rows: int, cols: int):
            indices = torch.tril_indices(rows, cols, dtype=torch.int32)
            # Have to perform assertion here because TorchScript returns dtypes
            # as integers, which are not comparable against eager torch.dtype.
            assert indices.dtype == torch.int32

        self.checkScript(tril_indices, (3, 3))