1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
# Owner(s): ["oncall: jit"]
from collections import namedtuple
from typing import Dict, List, Optional, Tuple
from torch.testing._internal.jit_utils import JitTestCase
from torch.testing import FileCheck
from textwrap import dedent
from jit.test_module_interface import TestModuleInterface # noqa: F401
import inspect
import os
import sys
import torch
import torch.testing._internal.jit_utils
# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
if __name__ == '__main__':
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
"\tpython test/test_jit.py TESTNAME\n\n"
"instead.")
class TestTypesAndAnnotation(JitTestCase):
def test_pep585_type(self):
# TODO add test to use PEP585 type annotation for return type after py3.9
# see: https://www.python.org/dev/peps/pep-0585/#id5
def fn(x: torch.Tensor) -> Tuple[Tuple[torch.Tensor], Dict[str, int]]:
xl: list[tuple[torch.Tensor]] = []
xd: dict[str, int] = {}
xl.append((x,))
xd['foo'] = 1
return xl.pop(), xd
self.checkScript(fn, [torch.randn(2, 2)])
x = torch.randn(2, 2)
expected = fn(x)
scripted = torch.jit.script(fn)(x)
self.assertEqual(expected, scripted)
def test_types_as_values(self):
def fn(m: torch.Tensor) -> torch.device:
return m.device
self.checkScript(fn, [torch.randn(2, 2)])
GG = namedtuple('GG', ['f', 'g'])
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
@torch.jit.ignore
def foo(self, x: torch.Tensor, z: torch.Tensor) -> Tuple[GG, GG]:
return GG(x, z), GG(x, z)
def forward(self, x, z):
return self.foo(x, z)
foo = torch.jit.script(Foo())
y = foo(torch.randn(2, 2), torch.randn(2, 2))
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
@torch.jit.ignore
def foo(self, x, z) -> Tuple[GG, GG]:
return GG(x, z)
def forward(self, x, z):
return self.foo(x, z)
foo = torch.jit.script(Foo())
y = foo(torch.randn(2, 2), torch.randn(2, 2))
def test_ignore_with_types(self):
@torch.jit.ignore
def fn(x: Dict[str, Optional[torch.Tensor]]):
return x + 10
class M(torch.nn.Module):
def __init__(self):
super(M, self).__init__()
def forward(self, in_batch: Dict[str, Optional[torch.Tensor]]) -> torch.Tensor:
self.dropout_modality(in_batch)
fn(in_batch)
return torch.tensor(1)
@torch.jit.ignore
def dropout_modality(self, in_batch: Dict[str, Optional[torch.Tensor]]) -> Dict[str, Optional[torch.Tensor]]:
return in_batch
sm = torch.jit.script(M())
FileCheck().check("dropout_modality").check("in_batch").run(str(sm.graph))
def test_python_callable(self):
class MyPythonClass(object):
@torch.jit.ignore
def __call__(self, *args) -> str:
return str(type(args[0]))
the_class = MyPythonClass()
@torch.jit.script
def fn(x):
return the_class(x)
# This doesn't involve the string frontend, so don't use checkScript
x = torch.ones(2)
self.assertEqual(fn(x), the_class(x))
def test_bad_types(self):
@torch.jit.ignore
def fn(my_arg):
return my_arg + 10
with self.assertRaisesRegex(RuntimeError, "argument 'my_arg'"):
@torch.jit.script
def other_fn(x):
return fn('2')
def test_type_annotate_py3(self):
def fn():
a : List[int] = []
b : torch.Tensor = torch.ones(2, 2)
c : Optional[torch.Tensor] = None
d : Optional[torch.Tensor] = torch.ones(3, 4)
for _ in range(10):
a.append(4)
c = torch.ones(2, 2)
d = None
return a, b, c, d
self.checkScript(fn, ())
def wrong_type():
wrong : List[int] = [0.5]
return wrong
with self.assertRaisesRegex(RuntimeError, "List type annotation"
r" `List\[int\]` did not match the "
"types of the given list elements"):
torch.jit.script(wrong_type)
def test_optional_no_element_type_annotation(self):
"""
Test that using an optional with no contained types produces an error.
"""
def fn_with_comment(x: torch.Tensor) -> Optional:
return (x, x)
def annotated_fn(x: torch.Tensor) -> Optional:
return (x, x)
with self.assertRaisesRegex(RuntimeError, r"Attempted to use Optional without a contained type"):
cu = torch.jit.CompilationUnit()
cu.define(dedent(inspect.getsource(fn_with_comment)))
with self.assertRaisesRegex(RuntimeError, r"Attempted to use Optional without a contained type"):
cu = torch.jit.CompilationUnit()
cu.define(dedent(inspect.getsource(annotated_fn)))
with self.assertRaisesRegex(RuntimeError, r"Attempted to use Optional without a contained type"):
torch.jit.script(fn_with_comment)
with self.assertRaisesRegex(RuntimeError, r"Attempted to use Optional without a contained type"):
torch.jit.script(annotated_fn)
def test_tuple_no_element_type_annotation(self):
"""
Test that using a tuple with no contained types produces an error.
"""
def fn_with_comment(x: torch.Tensor) -> Tuple:
return (x, x)
def annotated_fn(x: torch.Tensor) -> Tuple:
return (x, x)
with self.assertRaisesRegex(RuntimeError, r"Attempted to use Tuple without a contained type"):
cu = torch.jit.CompilationUnit()
cu.define(dedent(inspect.getsource(fn_with_comment)))
with self.assertRaisesRegex(RuntimeError, r"Attempted to use Tuple without a contained type"):
cu = torch.jit.CompilationUnit()
cu.define(dedent(inspect.getsource(annotated_fn)))
with self.assertRaisesRegex(RuntimeError, r"Attempted to use Tuple without a contained type"):
torch.jit.script(fn_with_comment)
with self.assertRaisesRegex(RuntimeError, r"Attempted to use Tuple without a contained type"):
torch.jit.script(annotated_fn)
def test_ignoring_module_attributes(self):
"""
Test that module attributes can be ignored.
"""
class Sub(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, a: int) -> int:
return sum([a])
class ModuleWithIgnoredAttr(torch.nn.Module):
__jit_ignored_attributes__ = ["a", "sub"]
def __init__(self, a: int, b: int):
super().__init__()
self.a = a
self.b = b
self.sub = Sub()
def forward(self) -> int:
return self.b
@torch.jit.ignore
def ignored_fn(self) -> int:
return self.sub.forward(self.a)
mod = ModuleWithIgnoredAttr(1, 4)
scripted_mod = torch.jit.script(mod)
self.assertEqual(scripted_mod(), 4)
self.assertEqual(scripted_mod.ignored_fn(), 1)
# Test the error message for ignored attributes.
class ModuleUsesIgnoredAttr(torch.nn.Module):
__jit_ignored_attributes__ = ["a", "sub"]
def __init__(self, a: int):
super().__init__()
self.a = a
self.sub = Sub()
def forward(self) -> int:
return self.sub(self.b)
mod = ModuleUsesIgnoredAttr(1)
with self.assertRaisesRegexWithHighlight(RuntimeError, r"attribute was ignored during compilation", "self.sub"):
scripted_mod = torch.jit.script(mod)
def test_unimported_type_resolution(self):
# verify fallback from the python resolver to the c++ resolver
@ torch.jit.script
def fn(x):
# type: (number) -> number
return x + 1
FileCheck().check('Scalar').run(fn.graph)
def test_parser_bug(self):
def parser_bug(o: Optional[torch.Tensor]):
pass
def test_mismatched_annotation(self):
with self.assertRaisesRegex(RuntimeError, 'annotated with type'):
@torch.jit.script
def foo():
x : str = 4
return x
def test_reannotate(self):
with self.assertRaisesRegex(RuntimeError, 'declare and annotate'):
@torch.jit.script
def foo():
x = 5
if 1 == 1:
x : Optional[int] = 7
def test_annotate_outside_init(self):
msg = "annotations on instance attributes must be declared in __init__"
highlight = "self.x: int"
# Simple case
with self.assertRaisesRegexWithHighlight(ValueError, msg, highlight):
@torch.jit.script
class BadModule(object):
def __init__(self, x: int):
self.x = x
def set(self, val: int):
self.x: int = val
# Type annotation in a loop
with self.assertRaisesRegexWithHighlight(ValueError, msg, highlight):
@torch.jit.script
class BadModuleLoop(object):
def __init__(self, x: int):
self.x = x
def set(self, val: int):
for i in range(3):
self.x: int = val
# Type annotation in __init__, should not fail
@torch.jit.script
class GoodModule(object):
def __init__(self, x: int):
self.x: int = x
def set(self, val: int):
self.x = val
def test_inferred_type_error_message(self):
inferred_type = torch._C.InferredType("ErrorReason")
with self.assertRaisesRegex(RuntimeError,
"Tried to get the type from an InferredType but the type is null."):
t = inferred_type.type()
with self.assertRaisesRegex(RuntimeError, "ErrorReason"):
t = inferred_type.type()
|