File: test_upgraders.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (297 lines) | stat: -rw-r--r-- 13,551 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# Owner(s): ["oncall: jit"]

import io
import os
import sys
import torch
import zipfile
from torch.testing import FileCheck
from typing import Union

# Make the helper files in test/ importable
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(pytorch_test_dir)
from torch.testing._internal.jit_utils import JitTestCase

if __name__ == '__main__':
    raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
                       "\tpython test/test_jit.py TESTNAME\n\n"
                       "instead.")

class TestUpgraders(JitTestCase):
    def _load_model_version(self, loaded_model):
        buffer = io.BytesIO()
        torch.jit.save(loaded_model, buffer)
        buffer.seek(0)
        zipped_model = zipfile.ZipFile(buffer)
        # there was a change in how we store version number
        # in a package between version 3 and 7.
        # So we have to check for both.
        try:
            version = int(zipped_model.read('archive/version').decode("utf-8"))
            return version
        except KeyError:
            version = int(zipped_model.read('archive/.data/version').decode("utf-8"))
            return version

    # TODO (tugsuu) We should ideally be generating this test cases.
    def test_populated_upgrader_graph(self):
        @torch.jit.script
        def f():
            return 0

        buffer = io.BytesIO()
        torch.jit.save(f, buffer)
        buffer.seek(0)
        torch.jit.load(buffer)
        upgraders_size = torch._C._get_upgraders_map_size()
        upgraders_dump = torch._C._dump_upgraders_map()
        # make sure we only populate the upgrader map only once
        # so we load it again and make sure the upgrader map has
        # same content
        buffer.seek(0)
        torch.jit.load(buffer)
        upgraders_size_second_time = torch._C._get_upgraders_map_size()
        upgraders_dump_second_time = torch._C._dump_upgraders_map()
        self.assertTrue(upgraders_size == upgraders_size_second_time)
        self.assertTrue(upgraders_dump == upgraders_dump_second_time)

    def test_add_value_to_version_map(self):
        map_before_test = torch._C._get_operator_version_map()

        upgrader_bumped_version = 3
        upgrader_name = "_test_serialization_subcmul_0_2"
        upgrader_schema = "aten::_test_serialization_subcmul(Tensor self, Tensor other, Scalar alpha=2) -> Tensor"
        dummy_entry = torch._C._UpgraderEntry(upgrader_bumped_version, upgrader_name, upgrader_schema)

        torch._C._test_only_add_entry_to_op_version_map("aten::_test_serialization_subcmul", dummy_entry)
        map_after_test = torch._C._get_operator_version_map()
        self.assertTrue("aten::_test_serialization_subcmul" in map_after_test)
        self.assertTrue(len(map_after_test) - len(map_before_test) == 1)
        torch._C._test_only_remove_entry_to_op_version_map("aten::_test_serialization_subcmul")
        map_after_remove_test = torch._C._get_operator_version_map()
        self.assertTrue("aten::_test_serialization_subcmul" not in map_after_remove_test)
        self.assertEqual(len(map_after_remove_test), len(map_before_test))

    def test_populated_test_upgrader_graph(self):
        @torch.jit.script
        def f():
            return 0

        buffer = io.BytesIO()
        torch.jit.save(f, buffer)
        buffer.seek(0)
        torch.jit.load(buffer)

        # upgrader map should have populated now
        upgraders_size = torch._C._get_upgraders_map_size()

        test_map = {"a": str(torch._C.Graph()), "c": str(torch._C.Graph())}
        torch._C._test_only_populate_upgraders(test_map)
        upgraders_size_after_test = torch._C._get_upgraders_map_size()
        self.assertEqual(upgraders_size_after_test - upgraders_size, 2)
        upgraders_dump = torch._C._dump_upgraders_map()
        self.assertTrue("a" in upgraders_dump)
        self.assertTrue("c" in upgraders_dump)

        torch._C._test_only_remove_upgraders(test_map)
        upgraders_size_after_remove_test = torch._C._get_upgraders_map_size()
        self.assertTrue(upgraders_size_after_remove_test == upgraders_size)
        upgraders_dump_after_remove_test = torch._C._dump_upgraders_map()
        self.assertTrue("a" not in upgraders_dump_after_remove_test)
        self.assertTrue("c" not in upgraders_dump_after_remove_test)

    def test_aten_div_tensor_at_3(self):
        model_path = pytorch_test_dir + "/jit/fixtures/test_versioned_div_tensor_v3.pt"
        loaded_model = torch.jit.load(model_path)
        # there are 3 aten::div in this model
        # And the upgrader for aten::div uses two
        # div's because of if/else branch
        FileCheck().check("prim::If").run(loaded_model.graph)
        FileCheck().check_count("aten::div", 6).run(loaded_model.graph)

        buffer = io.BytesIO()
        torch.jit.save(loaded_model, buffer)
        buffer.seek(0)
        version = self._load_model_version(loaded_model)
        self.assertTrue(version == 4)
        loaded_model_twice = torch.jit.load(buffer)
        # we check by its code because graph variable names
        # can be different every time
        self.assertEqual(loaded_model.code, loaded_model_twice.code)

    def test_aten_full_other_variants(self):
        def test_func():
            a = torch.full([4, 5, 6], 4, names=["a", "b", "c"], dtype=torch.int64)
            return a

        scripted_func = torch.jit.script(test_func)
        buffer = io.BytesIO()
        torch.jit.save(scripted_func, buffer)

        current_flag_value = torch._C._get_version_calculator_flag()
        # calculate based on old version
        torch._C._calculate_package_version_based_on_upgraders(False)
        buffer.seek(0)
        loaded_func = torch.jit.load(buffer)
        version = self._load_model_version(loaded_func)
        self.assertTrue(version == 5)

        # calculate based on new version
        torch._C._calculate_package_version_based_on_upgraders(True)
        buffer.seek(0)
        loaded_func = torch.jit.load(buffer)
        version = self._load_model_version(loaded_func)
        self.assertTrue(version == 5)

        # make sure we preserve old behaviou
        torch._C._calculate_package_version_based_on_upgraders(current_flag_value)

    def test_aten_linspace(self):
        model_path = pytorch_test_dir + "/jit/fixtures/test_versioned_linspace_v7.ptl"
        loaded_model = torch.jit.load(model_path)
        sample_inputs = ((3, 10), (-10, 10), (4.0, 6.0), (3 + 4j, 4 + 5j))
        for (a, b) in sample_inputs:
            output_with_step, output_without_step = loaded_model(a, b)
            # when no step is given, should have used 100
            self.assertTrue(output_without_step.size(dim=0) == 100)
            self.assertTrue(output_with_step.size(dim=0) == 5)

        version = self._load_model_version(loaded_model)
        self.assertTrue(version == 8)

    def test_aten_linspace_out(self):
        model_path = pytorch_test_dir + "/jit/fixtures/test_versioned_linspace_out_v7.ptl"
        loaded_model = torch.jit.load(model_path)
        sample_inputs = (
            (3, 10, torch.empty((100,), dtype=torch.int64)),
            (-10, 10, torch.empty((100,), dtype=torch.int64)),
            (4.0, 6.0, torch.empty((100,), dtype=torch.float64)),
            (3 + 4j, 4 + 5j, torch.empty((100,), dtype=torch.complex64)),
        )
        for (a, b, c) in sample_inputs:
            output = loaded_model(a, b, c)
            # when no step is given, should have used 100
            self.assertTrue(output.size(dim=0) == 100)

        version = self._load_model_version(loaded_model)
        self.assertTrue(version == 8)

    def test_aten_logspace(self):
        model_path = pytorch_test_dir + "/jit/fixtures/test_versioned_logspace_v8.ptl"
        loaded_model = torch.jit.load(model_path)
        sample_inputs = ((3, 10), (-10, 10), (4.0, 6.0), (3 + 4j, 4 + 5j))
        for (a, b) in sample_inputs:
            output_with_step, output_without_step = loaded_model(a, b)
            # when no step is given, should have used 100
            self.assertTrue(output_without_step.size(dim=0) == 100)
            self.assertTrue(output_with_step.size(dim=0) == 5)

        version = self._load_model_version(loaded_model)
        self.assertTrue(version == 9)

    def test_aten_logspace_out(self):
        model_path = pytorch_test_dir + "/jit/fixtures/test_versioned_logspace_out_v8.ptl"
        loaded_model = torch.jit.load(model_path)
        sample_inputs = (
            (3, 10, torch.empty((100,), dtype=torch.int64)),
            (-10, 10, torch.empty((100,), dtype=torch.int64)),
            (4.0, 6.0, torch.empty((100,), dtype=torch.float64)),
            (3 + 4j, 4 + 5j, torch.empty((100,), dtype=torch.complex64)),
        )
        for (a, b, c) in sample_inputs:
            output = loaded_model(a, b, c)
            # when no step is given, should have used 100
            self.assertTrue(output.size(dim=0) == 100)

        version = self._load_model_version(loaded_model)
        self.assertTrue(version == 9)

    def test_aten_test_serialization(self):
        model_path = pytorch_test_dir + "/jit/fixtures/_test_serialization_subcmul_v2.pt"

        # add test version entry to the version map
        upgrader_bumped_version = 3
        upgrader_name = "_test_serialization_subcmul_0_2"
        upgrader_schema = "aten::_test_serialization_subcmul(Tensor self, Tensor other, Scalar alpha=2) -> Tensor"
        dummy_entry = torch._C._UpgraderEntry(upgrader_bumped_version, upgrader_name, upgrader_schema)

        torch._C._test_only_add_entry_to_op_version_map("aten::_test_serialization_subcmul", dummy_entry)

        # add test upgrader in the upgraders map
        @torch.jit.script
        def _test_serialization_subcmul_0_2(self: torch.Tensor, other: torch.Tensor, alpha: Union[int, float] = 2) -> torch.Tensor:
            return other - (self * alpha)
        torch._C._test_only_populate_upgraders({"_test_serialization_subcmul_0_2": str(_test_serialization_subcmul_0_2.graph)})

        # test if the server is able to find the test upgraders and apply to IR
        loaded_model = torch.jit.load(model_path)
        FileCheck().check_count("aten::mul", 2).run(loaded_model.graph)
        FileCheck().check_count("aten::sub", 2).run(loaded_model.graph)

        buffer = io.BytesIO()
        torch.jit.save(loaded_model, buffer)
        buffer.seek(0)
        version = self._load_model_version(loaded_model)
        self.assertTrue(version == 3)
        loaded_model_twice = torch.jit.load(buffer)
        # we check by its' code because graph variable names
        # can be different every time
        self.assertEqual(loaded_model.code, loaded_model_twice.code)
        torch._C._test_only_remove_entry_to_op_version_map("aten::_test_serialization_subcmul")
        torch._C._test_only_remove_upgraders({"_test_serialization_subcmul_0_2": str(_test_serialization_subcmul_0_2.graph)})

    def test_aten_div_scalar_at_3(self):
        model_path = pytorch_test_dir + "/jit/fixtures/test_versioned_div_scalar_float_v3.pt"
        loaded_model = torch.jit.load(model_path)
        FileCheck().check("prim::If").run(loaded_model.graph)
        FileCheck().check_count("aten::div", 2).run(loaded_model.graph)

        buffer = io.BytesIO()
        torch.jit.save(loaded_model, buffer)
        buffer.seek(0)
        version = self._load_model_version(loaded_model)
        self.assertEqual(version, 4)
        loaded_model_twice = torch.jit.load(buffer)

        self.assertEqual(loaded_model(torch.Tensor([5.0, 3.0]), 2.0),
                         loaded_model_twice(torch.Tensor([5.0, 3.0]), 2.0))

    def test_aten_div_tensor_out_at_3(self):
        model_path = pytorch_test_dir + "/jit/fixtures/test_versioned_div_tensor_out_v3.pt"
        loaded_model = torch.jit.load(model_path)
        FileCheck().check("prim::If").run(loaded_model.graph)
        FileCheck().check_count("aten::div", 2).run(loaded_model.graph)

        buffer = io.BytesIO()
        torch.jit.save(loaded_model, buffer)
        buffer.seek(0)
        version = self._load_model_version(loaded_model)
        self.assertTrue(version == 4)
        loaded_model_twice = torch.jit.load(buffer)
        # we check by its' code because graph variable names
        # can be different every time
        self.assertEqual(loaded_model.code, loaded_model_twice.code)

    def test_aten_full_at_4(self):
        model_path = pytorch_test_dir + "/jit/fixtures/test_versioned_full_integer_value_v4.pt"
        loaded_model = torch.jit.load(model_path)
        FileCheck().check_count("aten::Float", 1).run(loaded_model.graph)
        FileCheck().check_count("aten::full", 2).run(loaded_model.graph)

        buffer = io.BytesIO()
        torch.jit.save(loaded_model, buffer)
        buffer.seek(0)
        version = self._load_model_version(loaded_model)
        self.assertTrue(version == 5)
        loaded_model_twice = torch.jit.load(buffer)
        # we check by its' code because graph variable names
        # can be different every time
        self.assertEqual(loaded_model.code, loaded_model_twice.code)

    def test_aten_full_out_at_4(self):
        model_path = pytorch_test_dir + "/jit/fixtures/test_versioned_full_preserved_v4.pt"
        loaded_model = torch.jit.load(model_path)
        FileCheck().check_count("aten::full", 5).run(loaded_model.graph)
        version = self._load_model_version(loaded_model)
        self.assertTrue(version == 5)