File: test_extract_compiled_graph.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (195 lines) | stat: -rw-r--r-- 6,372 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Owner(s): ["oncall: jit"]

import unittest

from torch._lazy.ts_backend import init as init_ts_backend
init_ts_backend()
from torch._lazy import config
from torch._lazy.extract_compiled_graph import extract_compiled_graph
import torch
from torch import nn
import dis
import inspect
from torch import fx
import re
from contextlib import contextmanager
import copy

class ModuleConstScale(nn.Module):
    def __init__(self):
        super(ModuleConstScale, self).__init__()

    def forward(self, a):
        return a * 2

class ModuleSub(nn.Module):
    def __init__(self):
        super(ModuleSub, self).__init__()

    def forward(self, a, b):
        return a - b

class ModuleAddcmul(nn.Module):
    """
    addcmul function takes a at::Scalar which results in a special TSData containing a Scalar rather than a Tensor.
    """
    def __init__(self):
        super(ModuleAddcmul, self).__init__()

    def forward(self, a, b, c):
        return torch.addcmul(a, b, c, value=5)

class ModuleReturnMulti(nn.Module):
    def __init__(self):
        super(ModuleReturnMulti, self).__init__()

    def forward(self, a, b):
        return (b + 1, a - 1)

# The default fx tracer will convert torch.randn to a constant.. We may need
# a custom tracer.
# class ModuleEagerTensor(nn.Module):
#     def __init__(self):
#         super(ModuleEagerTensor, self).__init__()
#
#     def forward(self, a):
#         b = torch.randn(2, 3, device="cpu") # eager device
#         return a + b

# The module was planned to cover the case that a Fx graph return an eager
# tensor on the default device. It's harder than ModuleEagerTensor because
# we can not just override the device argument to Lazy since there is no
# explicit device argument.
#
# Unfortunately, the default fx tracer convert the return value of the forward
# method to a constant.. Comment out for now
# class ModuleReturnEagerTensorOnDefaultDevice(nn.Module):
#     def __init__(self):
#         super(ModuleReturnEagerTensorOnDefaultDevice, self).__init__()
#
#     def forward(self):
#         return torch.tensor((2, 3), dtype=torch.float32)

class ModuleReturnDupTensor(nn.Module):
    """
    Handle the corner case that the same tensor appears multiple times in the
    returned tuple. torchbench like drq will hit this corner case when running
    thru torchdynamo..
    """
    def __init__(self):
        super(ModuleReturnDupTensor, self).__init__()

    def forward(self, a, b):
        c = a + b
        return a - b, c, a + 1, c

class ModuleInplaceUpdate(nn.Module):
    def __init__(self):
        super(ModuleInplaceUpdate, self).__init__()

    def forward(self, a, b):
        a.sub_(b)
        return b - 1, b + 1

@contextmanager
def force_fallback_ctx_mgr(fallback_op):
    oldconfig = config.get_force_fallback()
    config.set_force_fallback(fallback_op)
    try:
        yield None
    finally:
        config.set_force_fallback(oldconfig)

@contextmanager
def nop_ctx_mgr():
    try:
        yield None
    finally:
        pass

def gen_rand_args(mod):
    args = []
    for _ in range(len(inspect.signature(mod.forward).parameters)):
        args.append(torch.randn(2, 3))
    return args

def allclose(expected, actual):
    def unwrap(cont):
        if isinstance(cont, (list, tuple)) and len(cont) == 1:
            return cont[0]
        return cont
    expected = unwrap(expected)
    actual = unwrap(actual)

    if isinstance(expected, torch.Tensor) and isinstance(actual, torch.Tensor):
        return torch.allclose(expected, actual)
    elif isinstance(expected, (tuple, list)) and isinstance(actual, (tuple, list)):
        return len(expected) == len(actual) and all(torch.allclose(a, b) for a, b in zip(expected, actual))
    else:
        raise RuntimeError("Unexpected types")

def verify_reusing_compiled_graph(mod, exception_msg_pattern, ncase=10):
    args = gen_rand_args(mod)
    out = mod(*args)

    dis.dis(mod.forward)

    try:
        optimized_mod = extract_compiled_graph(fx.symbolic_trace(mod), args)
    except RuntimeError as e:
        if exception_msg_pattern is None:
            raise e  # reraise the exception
        exception_message = str(e)
        if not re.search(exception_msg_pattern, exception_message):
            raise RuntimeError(f"Expection message does not match the required pattern: {exception_message}")
        else:
            # We are done for the test case that expects an exception
            return

    if exception_msg_pattern is not None:
        raise RuntimeError(f"Expect an exception matching pattern {exception_msg_pattern}")
    print("return value of optimized_mod", optimized_mod(*args))

    # check correctness
    failed_index = []
    for i in range(ncase):
        rand_args = gen_rand_args(mod)
        rand_args_copy = copy.deepcopy(rand_args)
        expected = mod(*rand_args)
        actual = optimized_mod(*rand_args_copy)

        if not allclose(expected, actual):
            print(f"Incorrect results. expected {expected}, actual {actual}")
            failed_index.append(i)
            continue

        # make sure arguments match after calling the model forward method to handle inplace
        # updates.
        if not allclose(rand_args, rand_args_copy):
            print(f"Incorrect updated arguments. expected {rand_args}, actual {rand_args_copy}")
            failed_index.append(i)
            continue

    if len(failed_index) > 0:
        raise RuntimeError(f"Failed {len(failed_index)}/{ncase} cases")

def maketest(module_cls, exception_msg_pattern=None, ctxmgr=None):
    def wrapper(self):
        nonlocal ctxmgr
        if not ctxmgr:
            ctxmgr = nop_ctx_mgr()
        with ctxmgr:
            verify_reusing_compiled_graph(module_cls(), exception_msg_pattern)

    return wrapper

class OptimizeTest(unittest.TestCase):
    test_sub = maketest(ModuleSub)
    # Same as test_sub but force aten::sub to fallback
    # We expect an exception caught because of LTC fallabck.
    test_ltc_fallback = maketest(ModuleSub, exception_msg_pattern="fallback.*aten::sub", ctxmgr=force_fallback_ctx_mgr("aten::sub"))
    test_const_scale = maketest(ModuleConstScale)
    test_addcmul = maketest(ModuleAddcmul)
    test_return_multi = maketest(ModuleReturnMulti)
    test_return_dup_tensor = maketest(ModuleReturnDupTensor)
    test_inplace_update = maketest(ModuleInplaceUpdate)