1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
#include <gtest/gtest.h>
#include <test/cpp/jit/test_utils.h>
#include <torch/torch.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/frontend/resolver.h>
#include <torch/csrc/jit/mobile/import.h>
#include <torch/csrc/jit/mobile/module.h>
// Cover codegen'd unboxing logic for these types:
//'Device',
//'Device?',
//'Dimname',
//'Dimname[1]',
//'Dimname[]',
//'Dimname[]?',
//'Generator?',
//'Layout?',
//'MemoryFormat',
//'MemoryFormat?',
//'Scalar',
//'Scalar?',
//'ScalarType',
//'ScalarType?',
//'Scalar[]',
//'Storage',
//'Stream',
//'Tensor',
//'Tensor(a!)',
//'Tensor(a!)[]',
//'Tensor(a)',
//'Tensor(b!)',
//'Tensor(c!)',
//'Tensor(d!)',
//'Tensor?',
//'Tensor?[]',
//'Tensor[]',
//'bool',
//'bool?',
//'bool[2]',
//'bool[3]',
//'bool[4]',
//'float',
//'float?',
//'float[]?',
//'int',
//'int?',
//'int[1]',
//'int[1]?',
//'int[2]',
//'int[2]?',
//'int[3]',
//'int[4]',
//'int[5]',
//'int[6]',
//'int[]',
//'int[]?',
//'str',
//'str?'
namespace torch {
namespace jit {
namespace mobile {
// covers int[], ScalarType?, Layout?, Device?, bool?
TEST(LiteInterpreterTest, Ones) {
// Load check in model: ModelWithDTypeDeviceLayoutPinMemory.ptl
auto testModelFile = "ModelWithDTypeDeviceLayoutPinMemory.ptl";
// class ModelWithDTypeDeviceLayoutPinMemory(torch.nn.Module):
// def forward(self, x: int):
// a = torch.ones([3, x], dtype=torch.int64, layout=torch.strided, device="cpu")
// return a
Module bc = _load_for_mobile(testModelFile);
std::vector<c10::IValue> input{c10::IValue(4)};
const auto result = bc.forward(input);
ASSERT_EQ(result.toTensor().size(0), 3);
ASSERT_EQ(result.toTensor().size(1), 4);
}
TEST(LiteInterpreterTest, Index) {
// Load check in model: ModelWithTensorOptional.ptl
auto testModelFile = "ModelWithTensorOptional.ptl";
// class ModelWithTensorOptional(torch.nn.Module):
// def forward(self, index):
// a = torch.zeros(2, 2)
// a[0][1] = 1
// a[1][0] = 2
// a[1][1] = 3
// return a[index]
Module bc = _load_for_mobile(testModelFile);
int64_t ind_1 = 0;
const auto result_1 = bc.forward({at::tensor(ind_1)});
at::Tensor expected = at::empty({1, 2}, c10::TensorOptions(c10::ScalarType::Float));
expected[0][0] = 0;
expected[0][1] = 1;
AT_ASSERT(result_1.toTensor().equal(expected));
}
TEST(LiteInterpreterTest, Gradient) {
// Load check in model: ModelWithScalarList.ptl
auto testModelFile = "ModelWithScalarList.ptl";
// class ModelWithScalarList(torch.nn.Module):
// def forward(self, a: int):
// values = torch.tensor([4., 1., 1., 16.], )
// if a == 0:
// return torch.gradient(values, spacing=torch.scalar_tensor(2., dtype=torch.float64))
// elif a == 1:
// return torch.gradient(values, spacing=[torch.tensor(1.).item()])
Module bc = _load_for_mobile(testModelFile);
const auto result_1 = bc.forward({0});
at::Tensor expected_1 = at::tensor({-1.5, -0.75, 3.75, 7.5}, c10::TensorOptions(c10::ScalarType::Float));
AT_ASSERT(result_1.toList().get(0).toTensor().equal(expected_1));
const auto result_2 = bc.forward({1});
at::Tensor expected_2 = at::tensor({-3.0, -1.5, 7.5, 15.0}, c10::TensorOptions(c10::ScalarType::Float));
AT_ASSERT(result_2.toList().get(0).toTensor().equal(expected_2));
}
TEST(LiteInterpreterTest, Upsample) {
// Load check in model: ModelWithFloatList.ptl
auto testModelFile = "ModelWithFloatList.ptl";
// model = torch.nn.Upsample(scale_factor=(2.0,), mode="linear")
Module bc = _load_for_mobile(testModelFile);
const auto result_1 = bc.forward({at::ones({1, 2, 3})});
at::Tensor expected_1 = at::ones({1, 2, 6}, c10::TensorOptions(c10::ScalarType::Float));
AT_ASSERT(result_1.toTensor().equal(expected_1));
}
TEST(LiteInterpreterTest, IndexTensor) {
// Load check in model: ModelWithListOfOptionalTensors.ptl
auto testModelFile = "ModelWithListOfOptionalTensors.ptl";
// class ModelWithListOfOptionalTensors(torch.nn.Module):
// def forward(self, index):
// values = torch.tensor([4., 1., 1., 16.], )
// return values[[index, torch.tensor(0)]]
Module bc = _load_for_mobile(testModelFile);
const auto result_1 = bc.forward({at::tensor({1}, c10::TensorOptions(c10::ScalarType::Long))});
at::Tensor expected_1 = at::tensor({1.}, c10::TensorOptions(c10::ScalarType::Float));
AT_ASSERT(result_1.toTensor().equal(expected_1));
}
TEST(LiteInterpreterTest, Conv2d) {
// Load check in model: ModelWithArrayOfInt.ptl
auto testModelFile = "ModelWithArrayOfInt.ptl";
// model = torch.nn.Conv2d(1, 2, (2, 2), stride=(1, 1), padding=(1, 1))
Module bc = _load_for_mobile(testModelFile);
const auto result_1 = bc.forward({at::ones({1, 1, 1, 1})});
ASSERT_EQ(result_1.toTensor().sizes(), c10::IntArrayRef ({1,2,2,2}));
}
TEST(LiteInterpreterTest, AddTensor) {
// Load check in model: ModelWithTensors.ptl
auto testModelFile = "ModelWithTensors.ptl";
// class ModelWithTensors(torch.nn.Module):
// def forward(self, a):
// values = torch.ones(size=[2, 3], names=['N', 'C'])
// values[0][0] = a[0]
// return values
Module bc = _load_for_mobile(testModelFile);
const auto result_1 = bc.forward({at::tensor({1, 2, 3}, c10::TensorOptions(c10::ScalarType::Long))});
at::Tensor expected_1 = at::tensor({2, 3, 4}, c10::TensorOptions(c10::ScalarType::Long));
AT_ASSERT(result_1.toTensor().equal(expected_1));
}
TEST(LiteInterpreterTest, DivideTensor) {
// Load check in model: ModelWithStringOptional.ptl
auto testModelFile = "ModelWithStringOptional.ptl";
// class ModelWithStringOptional(torch.nn.Module):
// def forward(self, b):
// a = torch.tensor(3, dtype=torch.int64)
// out = torch.empty(size=[1], dtype=torch.float)
// torch.div(b, a, out=out)
// return [torch.div(b, a, rounding_mode='trunc'), out]
Module bc = _load_for_mobile(testModelFile);
const auto result_1 = bc.forward({at::tensor({-12}, c10::TensorOptions(c10::ScalarType::Long))});
at::Tensor expected_1 = at::tensor({-4}, c10::TensorOptions(c10::ScalarType::Long));
at::Tensor expected_2 = at::tensor({-4.}, c10::TensorOptions(c10::ScalarType::Float));
AT_ASSERT(result_1.toList().get(0).toTensor().equal(expected_1));
AT_ASSERT(result_1.toList().get(1).toTensor().equal(expected_2));
}
TEST(LiteInterpreterTest, MultipleOps) {
// Load check in model: ModelWithMultipleOps.ptl
auto testModelFile = "ModelWithMultipleOps.ptl";
// class ModelWithMultipleOps(torch.nn.Module):
// def __init__(self):
// super(Model, self).__init__()
// self.ops = torch.nn.Sequential(
// torch.nn.ReLU(),
// torch.nn.Flatten(),
// )
// def forward(self, x):
// x[1] = -2
// return self.ops(x)
Module bc = _load_for_mobile(testModelFile);
auto b = at::ones({2, 2, 2, 2});
const auto result = bc.forward({b});
at::Tensor expected = torch::tensor({{1, 1, 1, 1, 1, 1, 1, 1}, {0, 0, 0, 0, 0, 0, 0, 0}}, c10::TensorOptions(c10::ScalarType::Float));
AT_ASSERT(result.toTensor().equal(expected));
}
} // namespace mobile
} // namespace jit
} // namespace torch
|