File: tests_setup.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (143 lines) | stat: -rw-r--r-- 4,331 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import functools
import os
from io import BytesIO
import shutil

import sys

import torch
from torch.jit.mobile import _load_for_lite_interpreter, _export_operator_list

_OPERATORS = set()
_FILENAMES = []
_MODELS = []


def save_model(cls):
    """Save a model and dump all the ops"""

    @functools.wraps(cls)
    def wrapper_save():
        _MODELS.append(cls)
        model = cls()
        scripted = torch.jit.script(model)
        buffer = BytesIO(scripted._save_to_buffer_for_lite_interpreter())
        buffer.seek(0)
        mobile_module = _load_for_lite_interpreter(buffer)
        ops = _export_operator_list(mobile_module)
        _OPERATORS.update(ops)
        path = f"./{cls.__name__}.ptl"
        _FILENAMES.append(path)
        scripted._save_for_lite_interpreter(path)

    return wrapper_save


@save_model
class ModelWithDTypeDeviceLayoutPinMemory(torch.nn.Module):
    def forward(self, x: int):
        a = torch.ones(size=[3, x], dtype=torch.int64, layout=torch.strided, device="cpu", pin_memory=False)
        return a


@save_model
class ModelWithTensorOptional(torch.nn.Module):
    def forward(self, index):
        a = torch.zeros(2, 2)
        a[0][1] = 1
        a[1][0] = 2
        a[1][1] = 3
        return a[index]


# gradient.scalarrayint(Tensor self, *, Scalar[] spacing, int? dim=None, int edge_order=1) -> Tensor[]
@save_model
class ModelWithScalarList(torch.nn.Module):
    def forward(self, a: int):
        values = torch.tensor([4., 1., 1., 16.], )
        if a == 0:
            return torch.gradient(values, spacing=torch.scalar_tensor(2., dtype=torch.float64))
        elif a == 1:
            return torch.gradient(values, spacing=[torch.tensor(1.).item()])


# upsample_linear1d.vec(Tensor input, int[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor
@save_model
class ModelWithFloatList(torch.nn.Upsample):
    def __init__(self):
        super().__init__(scale_factor=(2.0,), mode="linear", align_corners=False, recompute_scale_factor=True)


# index.Tensor(Tensor self, Tensor?[] indices) -> Tensor
@save_model
class ModelWithListOfOptionalTensors(torch.nn.Module):
    def forward(self, index):
        values = torch.tensor([[4., 1., 1., 16.]])
        return values[torch.tensor(0), index]


# conv2d(Tensor input, Tensor weight, Tensor? bias=None, int[2] stride=1, int[2] padding=0, int[2] dilation=1,
# int groups=1) -> Tensor
@save_model
class ModelWithArrayOfInt(torch.nn.Conv2d):
    def __init__(self):
        super().__init__(1, 2, (2, 2), stride=(1, 1), padding=(1, 1))


# add.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor
# ones_like(Tensor self, *, ScalarType?, dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None,
# MemoryFormat? memory_format=None) -> Tensor
@save_model
class ModelWithTensors(torch.nn.Module):
    def forward(self, a):
        b = torch.ones_like(a)
        return a + b

@save_model
class ModelWithStringOptional(torch.nn.Module):
    def forward(self, b):
        a = torch.tensor(3, dtype=torch.int64)
        out = torch.empty(size=[1], dtype=torch.float)
        torch.div(b, a, out=out)
        return [torch.div(b, a, rounding_mode='trunc'), out]


@save_model
class ModelWithMultipleOps(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.ops = torch.nn.Sequential(
            torch.nn.ReLU(),
            torch.nn.Flatten(),
        )

    def forward(self, x):
        x[1] = -2
        return self.ops(x)


if __name__ == "__main__":
    command = sys.argv[1]
    ops_yaml = sys.argv[2]
    backup = ops_yaml + ".bak"
    if command == "setup":
        tests = [
            ModelWithDTypeDeviceLayoutPinMemory(),
            ModelWithTensorOptional(),
            ModelWithScalarList(),
            ModelWithFloatList(),
            ModelWithListOfOptionalTensors(),
            ModelWithArrayOfInt(),
            ModelWithTensors(),
            ModelWithStringOptional(),
            ModelWithMultipleOps(),
        ]
        shutil.copyfile(ops_yaml, backup)
        with open(ops_yaml, 'a') as f:
            for op in _OPERATORS:
                f.write(f"- {op}\n")
    elif command == "shutdown":
        for file in _MODELS:
            if os.path.isfile(file):
                os.remove(file)
        shutil.move(backup, ops_yaml)