1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
#include <gtest/gtest.h>
#include <torch/csrc/jit/mobile/nnc/context.h>
#include <torch/csrc/jit/mobile/nnc/registry.h>
#include <ATen/Functions.h>
namespace torch {
namespace jit {
namespace mobile {
namespace nnc {
extern "C" {
// out = a * n (doing calculation in the `tmp` buffer)
int slow_mul_kernel(void** args) {
const int size = 128;
at::Tensor a = at::from_blob(args[0], {size}, at::kFloat);
at::Tensor out = at::from_blob(args[1], {size}, at::kFloat);
at::Tensor n = at::from_blob(args[2], {1}, at::kInt);
at::Tensor tmp = at::from_blob(args[3], {size}, at::kFloat);
tmp.zero_();
for (int i = n.item().toInt(); i > 0; i--) {
tmp.add_(a);
}
out.copy_(tmp);
return 0;
}
int dummy_kernel(void** /* args */) {
return 0;
}
} // extern "C"
REGISTER_NNC_KERNEL("slow_mul", slow_mul_kernel)
REGISTER_NNC_KERNEL("dummy", dummy_kernel)
InputSpec create_test_input_spec(const std::vector<int64_t>& sizes) {
InputSpec input_spec;
input_spec.sizes_ = sizes;
input_spec.dtype_ = at::kFloat;
return input_spec;
}
OutputSpec create_test_output_spec(const std::vector<int64_t>& sizes) {
OutputSpec output_spec;
output_spec.sizes_ = sizes;
output_spec.dtype_ = at::kFloat;
return output_spec;
}
MemoryPlan create_test_memory_plan(const std::vector<int64_t>& buffer_sizes) {
MemoryPlan memory_plan;
memory_plan.buffer_sizes_ = buffer_sizes;
return memory_plan;
}
TEST(Function, ExecuteSlowMul) {
const int a = 999;
const int n = 100;
const int size = 128;
Function f;
f.set_nnc_kernel_id("slow_mul");
f.set_input_specs({create_test_input_spec({size})});
f.set_output_specs({create_test_output_spec({size})});
f.set_parameters(c10::impl::toList(c10::List<at::Tensor>({
at::ones({1}, at::kInt).mul(n)
})));
f.set_memory_plan(create_test_memory_plan({sizeof(float) * size}));
c10::List<at::Tensor> input({
at::ones({size}, at::kFloat).mul(a)
});
auto outputs = f.run(c10::impl::toList(input));
auto output = ((const c10::IValue&) outputs[0]).toTensor();
auto expected_output = at::ones({size}, at::kFloat).mul(a * n);
EXPECT_TRUE(output.equal(expected_output));
}
TEST(Function, Serialization) {
Function f;
f.set_name("test_function");
f.set_nnc_kernel_id("test_kernel");
f.set_input_specs({create_test_input_spec({1, 3, 224, 224})});
f.set_output_specs({create_test_output_spec({1000})});
f.set_parameters(c10::impl::toList(c10::List<at::Tensor>({
at::ones({1, 16, 3, 3}, at::kFloat),
at::ones({16, 32, 1, 1}, at::kFloat),
at::ones({32, 1, 3, 3}, at::kFloat)
})));
f.set_memory_plan(create_test_memory_plan({
sizeof(float) * 1024,
sizeof(float) * 2048,
}));
auto serialized = f.serialize();
Function f2(serialized);
EXPECT_EQ(f2.name(), "test_function");
EXPECT_EQ(f2.nnc_kernel_id(), "test_kernel");
EXPECT_EQ(f2.input_specs().size(), 1);
EXPECT_EQ(f2.input_specs()[0].sizes_, std::vector<int64_t>({1, 3, 224, 224}));
EXPECT_EQ(f2.input_specs()[0].dtype_, at::kFloat);
EXPECT_EQ(f2.output_specs().size(), 1);
EXPECT_EQ(f2.output_specs()[0].sizes_, std::vector<int64_t>({1000}));
EXPECT_EQ(f2.output_specs()[0].dtype_, at::kFloat);
EXPECT_EQ(f2.parameters().size(), 3);
EXPECT_EQ(f2.parameters()[0].toTensor().sizes(), at::IntArrayRef({1, 16, 3, 3}));
EXPECT_EQ(f2.parameters()[1].toTensor().sizes(), at::IntArrayRef({16, 32, 1, 1}));
EXPECT_EQ(f2.parameters()[2].toTensor().sizes(), at::IntArrayRef({32, 1, 3, 3}));
EXPECT_EQ(f2.memory_plan().buffer_sizes_.size(), 2);
EXPECT_EQ(f2.memory_plan().buffer_sizes_[0], sizeof(float) * 1024);
EXPECT_EQ(f2.memory_plan().buffer_sizes_[1], sizeof(float) * 2048);
}
TEST(Function, ValidInput) {
const int size = 128;
Function f;
f.set_nnc_kernel_id("dummy");
f.set_input_specs({create_test_input_spec({size})});
c10::List<at::Tensor> input({
at::ones({size}, at::kFloat)
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto)
EXPECT_NO_THROW(
f.run(c10::impl::toList(input)));
}
TEST(Function, InvalidInput) {
const int size = 128;
Function f;
f.set_nnc_kernel_id("dummy");
f.set_input_specs({create_test_input_spec({size})});
c10::List<at::Tensor> input({
at::ones({size * 2}, at::kFloat)
});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto)
EXPECT_THROW(
f.run(c10::impl::toList(input)),
c10::Error);
}
} // namespace nnc
} // namespace mobile
} // namespace jit
} // namespace torch
|