1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
|
# Owner(s): ["oncall: mobile"]
import torch
import torch.utils.bundled_inputs
import io
from typing import Dict, List
import inspect
from torch.testing import FileCheck
from torch.jit.mobile import _load_for_lite_interpreter, _export_operator_list
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.testing._internal.common_quantization import (
AnnotatedSingleLayerLinearModel,
TwoLayerLinearModel,
AnnotatedNestedModel
)
from torch.testing._internal.common_quantization import QuantizationLiteTestCase
class TestLiteScriptModule(TestCase):
def getScriptExportImportCopy(self, m, save_mobile_debug_info=True, also_test_file=False):
m_scripted = torch.jit.script(m)
if not also_test_file:
buffer = io.BytesIO(m_scripted._save_to_buffer_for_lite_interpreter(_save_mobile_debug_info=save_mobile_debug_info))
buffer.seek(0)
mobile_module = _load_for_lite_interpreter(buffer)
return mobile_module
with TemporaryFileName() as fname:
m_scripted._save_for_lite_interpreter(fname, _save_mobile_debug_info=save_mobile_debug_info)
mobile_module = _load_for_lite_interpreter(fname)
return mobile_module
def test_load_mobile_module(self):
class MyTestModule(torch.nn.Module):
def __init__(self):
super(MyTestModule, self).__init__()
def forward(self, x):
return x + 10
input = torch.tensor([1])
script_module = torch.jit.script(MyTestModule())
script_module_result = script_module(input)
buffer = io.BytesIO(script_module._save_to_buffer_for_lite_interpreter())
buffer.seek(0)
mobile_module = _load_for_lite_interpreter(buffer)
mobile_module_result = mobile_module(input)
torch.testing.assert_close(script_module_result, mobile_module_result)
mobile_module_forward_result = mobile_module.forward(input)
torch.testing.assert_close(script_module_result, mobile_module_forward_result)
mobile_module_run_method_result = mobile_module.run_method("forward", input)
torch.testing.assert_close(script_module_result, mobile_module_run_method_result)
def test_save_mobile_module_with_debug_info_with_trace(self):
class A(torch.nn.Module):
def __init__(self):
super(A, self).__init__()
def forward(self, x, y):
return x * y
class B(torch.nn.Module):
def __init__(self):
super(B, self).__init__()
self.A0 = A()
self.A1 = A()
def forward(self, x, y, z):
return self.A0(x, y) + self.A1(y, z)
for export_method in ['trace', 'script']:
x = torch.rand((2, 3))
y = torch.rand((2, 3))
z = torch.rand((2, 3))
if export_method == 'trace':
trace_module = torch.jit.trace(B(), [x, y, z])
else:
trace_module = torch.jit.script(B())
exported_module = trace_module._save_to_buffer_for_lite_interpreter(_save_mobile_debug_info=True)
buffer = io.BytesIO(exported_module)
buffer.seek(0)
assert(b"callstack_debug_map.pkl" in exported_module)
mobile_module = _load_for_lite_interpreter(buffer)
with self.assertRaisesRegex(RuntimeError, r"Module hierarchy:top\(B\)::<unknown>.A0\(A\)::forward.aten::mul"):
x = torch.rand((2, 3))
y = torch.rand((8, 10))
z = torch.rand((8, 10))
mobile_module(x, y, z)
with self.assertRaisesRegex(RuntimeError, r"Module hierarchy:top\(B\)::<unknown>.A1\(A\)::forward.aten::mul"):
x = torch.rand((2, 3))
y = torch.rand((2, 3))
z = torch.rand((8, 10))
mobile_module(x, y, z)
def test_load_mobile_module_with_debug_info(self):
class MyTestModule(torch.nn.Module):
def __init__(self):
super(MyTestModule, self).__init__()
def forward(self, x):
return x + 5
input = torch.tensor([3])
script_module = torch.jit.script(MyTestModule())
script_module_result = script_module(input)
buffer = io.BytesIO(script_module._save_to_buffer_for_lite_interpreter(_save_mobile_debug_info=True))
buffer.seek(0)
mobile_module = _load_for_lite_interpreter(buffer)
mobile_module_result = mobile_module(input)
torch.testing.assert_close(script_module_result, mobile_module_result)
mobile_module_forward_result = mobile_module.forward(input)
torch.testing.assert_close(script_module_result, mobile_module_forward_result)
mobile_module_run_method_result = mobile_module.run_method("forward", input)
torch.testing.assert_close(script_module_result, mobile_module_run_method_result)
def test_find_and_run_method(self):
class MyTestModule(torch.nn.Module):
def forward(self, arg):
return arg
input = (torch.tensor([1]), )
script_module = torch.jit.script(MyTestModule())
script_module_result = script_module(*input)
buffer = io.BytesIO(script_module._save_to_buffer_for_lite_interpreter())
buffer.seek(0)
mobile_module = _load_for_lite_interpreter(buffer)
has_bundled_inputs = mobile_module.find_method("get_all_bundled_inputs")
self.assertFalse(has_bundled_inputs)
torch.utils.bundled_inputs.augment_model_with_bundled_inputs(
script_module, [input], [])
buffer = io.BytesIO(script_module._save_to_buffer_for_lite_interpreter())
buffer.seek(0)
mobile_module = _load_for_lite_interpreter(buffer)
has_bundled_inputs = mobile_module.find_method("get_all_bundled_inputs")
self.assertTrue(has_bundled_inputs)
bundled_inputs = mobile_module.run_method("get_all_bundled_inputs")
mobile_module_result = mobile_module.forward(*bundled_inputs[0])
torch.testing.assert_close(script_module_result, mobile_module_result)
def test_method_calls_with_optional_arg(self):
class A(torch.nn.Module):
def __init__(self):
super(A, self).__init__()
# opt arg in script-to-script invocation
def forward(self, x, two: int = 2):
return x + two
class B(torch.nn.Module):
def __init__(self):
super(B, self).__init__()
self.A0 = A()
# opt arg in Python-to-script invocation
def forward(self, x, one: int = 1):
return self.A0(x) + one
script_module = torch.jit.script(B())
buffer = io.BytesIO(
script_module._save_to_buffer_for_lite_interpreter()
)
mobile_module = _load_for_lite_interpreter(buffer)
input = torch.tensor([5])
script_module_forward_result = script_module.forward(input)
mobile_module_forward_result = mobile_module.forward(input)
torch.testing.assert_close(
script_module_forward_result,
mobile_module_forward_result
)
# change ref only
script_module_forward_result = script_module.forward(input, 2)
self.assertFalse(
(script_module_forward_result == mobile_module_forward_result)
.all()
.item()
)
# now both match again
mobile_module_forward_result = mobile_module.forward(input, 2)
torch.testing.assert_close(
script_module_forward_result,
mobile_module_forward_result
)
def test_unsupported_classtype(self):
class Foo():
def __init__(self):
return
def func(self, x: int, y: int):
return x + y
class MyTestModule(torch.nn.Module):
def forward(self, arg):
f = Foo()
return f.func(1, 2)
script_module = torch.jit.script(MyTestModule())
with self.assertRaisesRegex(RuntimeError,
r"Workaround: instead of using arbitrary class type \(class Foo\(\)\), "
r"define a pytorch class \(class Foo\(torch\.nn\.Module\)\)\. "
r"The problematic type is: "):
script_module._save_to_buffer_for_lite_interpreter()
def test_unsupported_return_list_with_module_class(self):
class Foo(torch.nn.Module):
def __init__(self):
super(Foo, self).__init__()
class MyTestModuleForListWithModuleClass(torch.nn.Module):
def __init__(self):
super(MyTestModuleForListWithModuleClass, self).__init__()
self.foo = Foo()
def forward(self):
my_list: List[Foo] = [self.foo]
return my_list
script_module = torch.jit.script(MyTestModuleForListWithModuleClass())
with self.assertRaisesRegex(RuntimeError,
r"^Returining a list or dictionary with pytorch class type "
r"is not supported in mobile module "
r"\(List\[Foo\] or Dict\[int\, Foo\] for class Foo\(torch\.nn\.Module\)\)\. "
r"Workaround\: instead of using pytorch class as their element type\, "
r"use a combination of list\, dictionary\, and single types\.$"):
script_module._save_to_buffer_for_lite_interpreter()
def test_unsupported_return_dict_with_module_class(self):
class Foo(torch.nn.Module):
def __init__(self):
super(Foo, self).__init__()
class MyTestModuleForDictWithModuleClass(torch.nn.Module):
def __init__(self):
super(MyTestModuleForDictWithModuleClass, self).__init__()
self.foo = Foo()
def forward(self):
my_dict: Dict[int, Foo] = {1: self.foo}
return my_dict
script_module = torch.jit.script(MyTestModuleForDictWithModuleClass())
with self.assertRaisesRegex(RuntimeError,
r"^Returining a list or dictionary with pytorch class type "
r"is not supported in mobile module "
r"\(List\[Foo\] or Dict\[int\, Foo\] for class Foo\(torch\.nn\.Module\)\)\. "
r"Workaround\: instead of using pytorch class as their element type\, "
r"use a combination of list\, dictionary\, and single types\.$"):
script_module._save_to_buffer_for_lite_interpreter()
def test_module_export_operator_list(self):
class Foo(torch.nn.Module):
def __init__(self):
super(Foo, self).__init__()
self.weight = torch.ones((20, 1, 5, 5))
self.bias = torch.ones(20)
def forward(self, input):
x1 = torch.zeros(2, 2)
x2 = torch.empty_like(torch.empty(2, 2))
x3 = torch._convolution(
input,
self.weight,
self.bias,
[1, 1],
[0, 0],
[1, 1],
False,
[0, 0],
1,
False,
False,
True,
True,
)
return (x1, x2, x3)
m = torch.jit.script(Foo())
buffer = io.BytesIO(m._save_to_buffer_for_lite_interpreter())
buffer.seek(0)
mobile_module = _load_for_lite_interpreter(buffer)
expected_ops = {
"aten::_convolution",
"aten::empty.memory_format",
"aten::empty_like",
"aten::zeros",
}
actual_ops = _export_operator_list(mobile_module)
self.assertEqual(actual_ops, expected_ops)
def test_source_range_simple(self):
class FooTest(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, x, w):
return torch.mm(x, w.t())
ft = FooTest()
loaded = self.getScriptExportImportCopy(ft)
_, lineno = inspect.getsourcelines(FooTest)
with self.assertRaisesRegex(RuntimeError, 'test_lite_script_module.py\", line {}'.format(lineno + 3)):
loaded(torch.rand(3, 4), torch.rand(30, 40))
def test_source_range_raise_exception(self):
class FooTest2(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self):
raise RuntimeError('foo')
_, lineno = inspect.getsourcelines(FooTest2)
# In C++ code, the type of exception thrown is torch::jit::JITException
# which does not extend c10::Error, and hence it isn't possible to add
# additional context to the exception message and preserve the correct
# C++ stack trace for symbolication. i.e. it isn't possible to add
# the debug handle string to show where in the Python code the exception
# occured w/o first changing
# torch::jit::JITException to extend c10::Error.
with self.assertRaisesRegex(torch.jit.Error, 'foo'):
ft = FooTest2()
loaded = self.getScriptExportImportCopy(ft)
loaded()
def test_source_range_function_call(self):
class FooTest3(torch.jit.ScriptModule):
@torch.jit.script_method
def add_method(self, x, w):
return x + w
@torch.jit.script_method
def forward(self, x, y, w):
x = x * y
x = x + 2
return self.add_method(x, w)
ft = FooTest3()
loaded = self.getScriptExportImportCopy(ft)
_, lineno = inspect.getsourcelines(FooTest3)
try:
loaded(torch.rand(3, 4), torch.rand(3, 4), torch.rand(30, 40))
except RuntimeError as e:
error_message = f"{e}"
self.assertTrue('test_lite_script_module.py\", line {}'.format(lineno + 3) in error_message)
self.assertTrue('test_lite_script_module.py\", line {}'.format(lineno + 9) in error_message)
self.assertTrue('top(FooTest3)' in error_message)
def test_source_range_no_debug_info(self):
class FooTest4(torch.jit.ScriptModule):
@torch.jit.script_method
def forward(self, x, w):
return torch.mm(x, w.t())
ft = FooTest4()
loaded = self.getScriptExportImportCopy(ft, save_mobile_debug_info=False)
try:
loaded(torch.rand(3, 4), torch.rand(30, 40))
except RuntimeError as e:
error_message = f"{e}"
self.assertTrue("test_lite_script_module.py" not in error_message)
def test_source_range_raise_exc(self):
class FooTest5(torch.jit.ScriptModule):
def __init__(self, val: int):
super(FooTest5, self).__init__()
self.val = val
@torch.jit.script_method
def add_method(self, val: int, x, w):
if (val == self.val):
raise RuntimeError('self.val and val are same')
return x + w
@torch.jit.script_method
def forward(self, val: int, x, y, w):
x = x * y
x = x + 2
return self.add_method(val, x, w)
ft = FooTest5(42)
loaded = self.getScriptExportImportCopy(ft)
_, lineno = inspect.getsourcelines(FooTest5)
try:
loaded(42, torch.rand(3, 4), torch.rand(3, 4), torch.rand(30, 40))
except torch.jit.Error as e:
error_message = f"{e}"
# In C++ code, the type of exception thrown is torch::jit::JITException
# which does not extend c10::Error, and hence it isn't possible to add
# additional context to the exception message and preserve the correct
# C++ stack trace for symbolication. i.e. it isn't possible to add
# the debug handle string to show where in the Python code the exception
# occured w/o first changing
# torch::jit::JITException to extend c10::Error.
self.assertTrue('self.val and val are same' in error_message)
def test_stacktrace_interface_call(self):
@torch.jit.interface
class Forward(torch.nn.Module):
def forward(self, x) -> torch.Tensor:
pass
def forwardError(self, x) -> torch.Tensor:
pass
class B(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x
def forwardError(self, x):
return self.call() + x
def call(self):
return torch.ones(-1)
class A(torch.nn.Module):
b : Forward
def __init__(self):
super().__init__()
self.b = B()
def forward(self):
self.b.forward(torch.ones(1))
self.b.forwardError(torch.ones(1))
a = torch.jit.script(A())
torch._C._enable_mobile_interface_call_export()
buffer = io.BytesIO(a._save_to_buffer_for_lite_interpreter(_save_mobile_debug_info=True))
buffer.seek(0)
mobile_module = _load_for_lite_interpreter(buffer)
try:
mobile_module()
self.assertTrue(False)
except RuntimeError as exp:
FileCheck().check("Trying to create tensor with negative dimension") \
.check("Traceback of TorchScript") \
.check("self.b.forwardError").check_next("~~~~~~~~~~~~~~~~~~~ <--- HERE") \
.check("return self.call").check_next("~~~~~~~~~ <--- HERE") \
.check("return torch.ones").check_next("~~~~~~~~~~ <--- HERE").run(str(exp))
class TestLiteScriptQuantizedModule(QuantizationLiteTestCase):
def test_single_layer(self):
input = torch.rand(2, 5, dtype=torch.float)
quantized_model = self._create_quantized_model(model_class=AnnotatedSingleLayerLinearModel, qengine="qnnpack")
self._compare_script_and_mobile(model=quantized_model, input=input)
def test_two_layer(self):
input = torch.rand(2, 5, dtype=torch.float)
quantized_model = self._create_quantized_model(model_class=TwoLayerLinearModel)
self._compare_script_and_mobile(model=quantized_model, input=input)
def test_annotated_nested(self):
input = torch.rand(2, 5, dtype=torch.float)
quantized_model = self._create_quantized_model(model_class=AnnotatedNestedModel, qengine="qnnpack")
self._compare_script_and_mobile(model=quantized_model, input=input)
def test_quantization_example(self):
# From the example in Static Quantization section of https://pytorch.org/docs/stable/quantization.html
class M(torch.nn.Module):
def __init__(self):
super(M, self).__init__()
self.quant = torch.ao.quantization.QuantStub()
self.conv = torch.nn.Conv2d(1, 1, 1)
self.relu = torch.nn.ReLU()
self.dequant = torch.ao.quantization.DeQuantStub()
def forward(self, x):
x = self.quant(x)
x = self.conv(x)
x = self.relu(x)
x = self.dequant(x)
return x
model_fp32 = M()
model_fp32.eval()
model_fp32.qconfig = torch.ao.quantization.get_default_qconfig('qnnpack')
model_fp32_fused = torch.ao.quantization.fuse_modules(model_fp32, [['conv', 'relu']])
model_fp32_prepared = torch.ao.quantization.prepare(model_fp32_fused)
input_fp32 = torch.randn(4, 1, 4, 4)
model_fp32_prepared(input_fp32)
model_int8 = torch.ao.quantization.convert(model_fp32_prepared)
input = torch.randn(4, 1, 4, 4)
self._compare_script_and_mobile(model=model_int8, input=input)
def test_bundled_input_with_dynamic_type(self):
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
def forward(
self,
x: Dict[int, torch.Tensor],
y: Dict[int, torch.Tensor],
z: Dict[int, torch.Tensor],
):
return x
model = Model()
script_module = torch.jit.script(model)
sample_input = {
script_module.forward: [
(
{0: torch.ones(1)},
{1: torch.ones(1)},
{2: torch.ones(1)},
)
]
}
bundled_model = torch.utils.bundled_inputs.bundle_inputs(
script_module, sample_input
)
buf = bundled_model._save_to_buffer_for_lite_interpreter()
mobile_module = _load_for_lite_interpreter(io.BytesIO(buf))
i = mobile_module.run_method("get_all_bundled_inputs")
self.assertEqual(
i[0],
(
{0: torch.ones(1)},
{1: torch.ones(1)},
{2: torch.ones(1)},
),
)
if __name__ == '__main__':
run_tests()
|