1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
# Owner(s): ["module: nn"]
from itertools import product
import unittest
import random
import itertools
import torch
from torch.testing._internal.common_utils import run_tests, set_default_dtype, \
instantiate_parametrized_tests
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_nn import NNTestCase, freeze_rng_state
from torch.testing._internal.common_device_type import instantiate_device_type_tests, expectedFailureXLA
import torch.nn.functional as F
import torch.nn as nn
class TestDropoutNN(NNTestCase):
def _test_alpha_dropout(self, cls, input):
mean = input.mean()
std = input.std()
for p in [0.2, 0.5, 0.8]:
module = cls(p)
input_var = input.detach().clone().requires_grad_()
output = module(input_var)
# output mean should be close to input mean
self.assertLess(abs(output.data.mean() - mean), 0.1)
# output std should be close to input std
self.assertLess(abs(output.data.std() - std), 0.1)
output.backward(input)
def test_AlphaDropout(self):
# generate random tensor with zero mean and unit std
input = torch.randn(5000)
self._test_alpha_dropout(nn.AlphaDropout, input)
def test_FeatureAlphaDropout(self):
b = random.randint(1, 5)
w = random.randint(1, 5)
h = random.randint(1, 5)
d = random.randint(1, 2)
num_features = 1000
input = torch.randn(num_features, b, d, w, h)
self._test_alpha_dropout(nn.FeatureAlphaDropout, input)
# no batch dims
input = torch.randn(50, 20, 64, 64)
self._test_alpha_dropout(nn.FeatureAlphaDropout, input)
@unittest.skipIf(not TEST_CUDA, "CUDA unavailable")
def test_native_dropout_corner_case(self):
for train in [True, False]:
for p in [0.0, 1.0]:
for device in ["cuda", "cpu"]:
x = torch.randn(5).to(device=device).requires_grad_()
x_ref = x.detach().requires_grad_()
o = torch.native_dropout(x, p, train)[0]
o_ref = torch.dropout(x_ref, p, train)
o.sum().backward()
o_ref.sum().backward()
assert(o.equal(o_ref))
assert(x.grad.equal(x_ref.grad))
def test_invalid_dropout_p(self):
v = torch.ones(1)
self.assertRaises(ValueError, lambda: nn.Dropout(-0.1))
self.assertRaises(ValueError, lambda: nn.Dropout(1.1))
self.assertRaises(ValueError, lambda: nn.Dropout1d(-0.1))
self.assertRaises(ValueError, lambda: nn.Dropout1d(1.1))
self.assertRaises(ValueError, lambda: nn.Dropout2d(-0.1))
self.assertRaises(ValueError, lambda: nn.Dropout2d(1.1))
self.assertRaises(ValueError, lambda: nn.Dropout3d(-0.1))
self.assertRaises(ValueError, lambda: nn.Dropout3d(1.1))
self.assertRaises(ValueError, lambda: F.dropout(v, -0.1))
self.assertRaises(ValueError, lambda: F.dropout(v, 1.1))
class TestDropoutNNDeviceType(NNTestCase):
def _test_dropout(self, cls, device, input, memory_format=torch.contiguous_format):
p = 0.2
input = input.to(device).fill_(1 - p)
module = cls(p)
input_var = input.clone(memory_format=memory_format).requires_grad_()
output = module(input_var)
self.assertTrue(output.is_contiguous(memory_format=memory_format))
self.assertLess(abs(output.data.mean() - (1 - p)), 0.05)
output.backward(input)
self.assertTrue(input_var.grad.is_contiguous(memory_format=memory_format))
self.assertLess(abs(input_var.grad.data.mean() - (1 - p)), 0.05)
module = cls(p, True)
input_var = input.clone(memory_format=memory_format).requires_grad_()
output = module(input_var + 0)
self.assertTrue(output.is_contiguous(memory_format=memory_format))
self.assertLess(abs(output.data.mean() - (1 - p)), 0.05)
output.backward(input)
self.assertTrue(input_var.grad.is_contiguous(memory_format=memory_format))
self.assertLess(abs(input_var.grad.data.mean() - (1 - p)), 0.05)
# check eval mode doesn't change anything
for inplace in [True, False]:
module = cls(p, inplace).eval()
self.assertEqual(input, module(input))
# Check that these don't raise errors
module.__repr__()
str(module)
def _test_dropout_discontiguous(self, cls, device, memory_format=torch.contiguous_format):
# In this test, we verify that dropout preserves the layout and data for different memory formats.
# We check whether, we get same values for the output of dropout, when the probability
# of dropout is 0 or very close to 0.
# Reference: https://github.com/pytorch/pytorch/issues/47176
close_to_zero_p = 1e-10 # Should be almost zero but not zero, as for p=0 different path is taken
for p in [0, close_to_zero_p]:
inp = torch.ones(2, 3, 3, 3, device=device)
inp_discontiguous = torch.empty(2, 3, 3, 6, device=device, memory_format=memory_format)[..., ::2]
inp_discontiguous.copy_(inp)
mod = cls(p=p)
out = mod(inp_discontiguous)
if p != 0: # Zero will keep strides as is based on input.
# When prob == 0, input stride (54, 18, 6, 2) -> output stride (54, 18, 6, 2)
# When prob != 0, input stride (54, 18, 6, 2) -> output stride (27, 9, 3, 1)
self.assertTrue(out.is_contiguous(memory_format=memory_format))
self.assertEqual(inp_discontiguous, out)
def _test_dropout_stride_mean_preserve(self, cls, device):
def invert_perm(p):
d = {x: i for i, x in enumerate(p)}
return (d[0], d[1], d[2], d[3])
inp = torch.ones(2, 3, 4, 5, device=device)
shifts = [(0, 0), (1, 0), (0, 1), (1, 1)]
for perm in itertools.permutations((0, 1, 2, 3), r=4):
for shift in shifts:
for p in [1e-10, 0.3, 0.5, 0.7]:
mod = cls(p=p)
permuted_inp = inp.permute(perm).contiguous().permute(invert_perm(perm))
permuted_inp = permuted_inp[shift[0]:, shift[1]:, :, :]
out = mod(permuted_inp)
self.assertTrue(out.permute(perm).is_contiguous())
self.assertEqual(inp.mean(), out.mean(), rtol=0.5, atol=0.5)
if p == 1e-10:
self.assertEqual(permuted_inp, out)
else:
self.assertNotEqual(permuted_inp, out)
def test_Dropout(self, device):
input = torch.empty(1000)
self._test_dropout(nn.Dropout, device, input)
self._test_dropout_discontiguous(nn.Dropout, device)
self._test_dropout_discontiguous(nn.Dropout, device, memory_format=torch.channels_last)
self._test_dropout_stride_mean_preserve(nn.Dropout, device)
if self.device_type == 'cuda' or self.device_type == 'cpu':
input = input.bfloat16()
self._test_dropout(nn.Dropout, device, input)
def _test_dropoutNd_no_batch(self, dropout, input):
input_clone = input.clone()
with freeze_rng_state():
res_no_batch = dropout(input)
with freeze_rng_state():
res_batched = dropout(input_clone.unsqueeze(0)).squeeze(0)
self.assertEqual(res_no_batch, res_batched)
def _test_dropoutNd_channel_zero(self, dropout, input):
# Verify the number of zeros in a channel is 0 or the number of elements in the channel
# for a fully positive input tensor
shape = input.shape
B = shape[0]
C = shape[1]
channel_numel = torch.tensor(shape[2:]).prod()
result = dropout(input)
for b, c in product(range(B), range(C)):
self.assertTrue(result[b, c].count_nonzero() in (0, channel_numel))
@expectedFailureXLA # seems like freeze_rng_state is not honoured by XLA
def test_Dropout1d(self, device):
with set_default_dtype(torch.double):
N, C, L = random.randint(10, 15), random.randint(10, 15), random.randint(10, 15)
input = torch.empty(N, C, L)
self._test_dropout(nn.Dropout1d, device, input)
with self.assertRaisesRegex(RuntimeError, "Expected 2D or 3D input, but received a 4D input"):
nn.Dropout1d(p=0.5)(torch.rand(1, 2, 2, 2, device=device))
with self.assertRaisesRegex(RuntimeError, "Expected 2D or 3D input, but received a 1D input"):
nn.Dropout1d(p=0.5)(torch.rand(2, device=device))
# no batch dims
input = torch.rand(50, 2, device=device)
self._test_dropoutNd_no_batch(nn.Dropout1d(p=0.5), input)
self._test_dropoutNd_no_batch(nn.Dropout1d(p=0.5, inplace=True), input)
# check that complete channels are dropped
input = torch.ones(10, 4, 2, device=device)
self._test_dropoutNd_channel_zero(nn.Dropout1d(p=0.5), input)
self._test_dropoutNd_channel_zero(nn.Dropout1d(p=0.5, inplace=True), input)
@expectedFailureXLA # seems like freeze_rng_state is not honoured by XLA
def test_Dropout2d(self, device):
b = random.randint(1, 5)
w = random.randint(1, 5)
h = random.randint(1, 5)
num_features = 1000
input = torch.empty(num_features, b, w, h)
self._test_dropout(nn.Dropout2d, device, input)
self._test_dropout(nn.Dropout2d, device, input, memory_format=torch.channels_last)
self._test_dropout_discontiguous(nn.Dropout2d, device)
self._test_dropout_discontiguous(nn.Dropout2d, device, memory_format=torch.channels_last)
with self.assertWarnsRegex(UserWarning, "Received a 5-D input to dropout2d"):
nn.Dropout2d(p=0.5)(torch.rand(1, 2, 2, 2, 2, device=device))
with self.assertWarnsRegex(UserWarning, "Received a 2-D input to dropout2d"):
nn.Dropout2d(p=0.5)(torch.rand(1, 2, device=device))
# TODO: Uncomment these lines once no-batch-dim inputs are supported.
# For now, the historical dropout1d behavior is performed for 3D inputs.
# See https://github.com/pytorch/pytorch/issues/77081
# input = torch.rand(50, 2, 2, device=device)
# self._test_dropoutNd_no_batch(nn.Dropout2d(p=0.5), input)
# self._test_dropoutNd_no_batch(nn.Dropout2d(p=0.5, inplace=True), input)
with self.assertWarnsRegex(UserWarning, "assuming that channel-wise 1D dropout behavior is desired"):
nn.Dropout2d(p=0.5)(torch.rand(1, 2, 2, device=device))
# check that complete channels are dropped
input = torch.ones(10, 4, 2, 2, device=device)
self._test_dropoutNd_channel_zero(nn.Dropout2d(p=0.5), input)
self._test_dropoutNd_channel_zero(nn.Dropout2d(p=0.5, inplace=True), input)
@expectedFailureXLA # seems like freeze_rng_state is not honoured by XLA
def test_Dropout3d(self, device):
b = random.randint(1, 5)
w = random.randint(1, 5)
h = random.randint(1, 5)
d = random.randint(1, 2)
num_features = 1000
input = torch.empty(num_features, b, d, w, h)
self._test_dropout(nn.Dropout3d, device, input)
self._test_dropout_discontiguous(nn.Dropout3d, device)
self._test_dropout_discontiguous(nn.Dropout3d, device, memory_format=torch.channels_last)
with self.assertWarnsRegex(UserWarning, "Received a 6-D input to dropout3d"):
nn.Dropout3d(p=0.5)(torch.rand(1, 2, 2, 2, 2, 2, device=device))
with self.assertWarnsRegex(UserWarning, "Received a 3-D input to dropout3d"):
nn.Dropout3d(p=0.5)(torch.rand(1, 2, 2, device=device))
# no batch dims
input = torch.rand(50, 2, 2, 2, device=device)
self._test_dropoutNd_no_batch(nn.Dropout3d(p=0.5), input)
self._test_dropoutNd_no_batch(nn.Dropout3d(p=0.5, inplace=True), input)
# check that complete channels are dropped
input = torch.ones(10, 4, 2, 2, 2, device=device)
self._test_dropoutNd_channel_zero(nn.Dropout3d(p=0.5), input)
self._test_dropoutNd_channel_zero(nn.Dropout3d(p=0.5, inplace=True), input)
def test_empty_dropout(self, device):
x = torch.tensor([]).to(device)
out = torch.nn.functional.dropout(x)
self.assertEqual(out.size(), x.size())
instantiate_device_type_tests(TestDropoutNNDeviceType, globals())
instantiate_parametrized_tests(TestDropoutNN)
if __name__ == '__main__':
run_tests()
|