1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
|
# Owner(s): ["module: nn"]
import itertools
import random
import torch
from torch.testing._internal.common_utils import TestCase, run_tests
import torch.nn.utils.rnn as rnn_utils
class PackedSequenceTest(TestCase):
_type_by_name = {
'torch.DoubleTensor': (torch.DoubleTensor, 'double'),
'torch.FloatTensor': (torch.FloatTensor, 'float'),
# We leave out `'torch.HalfTensor': (torch.HalfTensor, 'half'),`
# because of an error in `pad_packed_sequence`
# > AttributeError: 'torch.HalfTensor' object has no attribute 'fill_'
'torch.LongTensor': (torch.LongTensor, 'long'),
'torch.IntTensor': (torch.IntTensor, 'int'),
'torch.ShortTensor': (torch.ShortTensor, 'short'),
'torch.CharTensor': (torch.CharTensor, 'char'),
'torch.ByteTensor': (torch.ByteTensor, 'byte'),
}
def __init__(self, *args, **kwargs):
super(PackedSequenceTest, self).__init__(*args, **kwargs)
self.batch_size = 5
self.max_length = 6
def _ordered_sequence(self, tensor_type):
"""Create ordered list of random sequences"""
seqs = [tensor_type(random.randint(1, self.max_length))
for _ in range(self.batch_size)]
if tensor_type == torch.ByteTensor:
seqs = [s.random_(0, 256) for s in seqs]
else:
seqs = [s.random_(-128, 128) for s in seqs]
ordered = sorted(seqs, key=len, reverse=True)
return ordered
def _padded_sequence(self, tensor_type):
"""Create Tensor of random padded sequences"""
ordered = self._ordered_sequence(tensor_type)
lengths = [len(i) for i in ordered]
padded_tensor = rnn_utils.pad_sequence(ordered)
return padded_tensor, lengths
def test_type_casts(self):
"""Test type casting of `PackedSequence` against type casting of tensor"""
for _, (input_type, _) in self._type_by_name.items():
for expected_type_str, (_, cast_str) in self._type_by_name.items():
for enforce_sorted in [True, False]:
padded, lengths = self._padded_sequence(input_type)
packed = rnn_utils.pack_padded_sequence(
padded, lengths, enforce_sorted=enforce_sorted)
# Apply cast to `PackedSequence` instance and unpack
masked = getattr(packed, cast_str)()
unpacked, lengths_out = rnn_utils.pad_packed_sequence(masked)
self.assertEqual(unpacked.type(), expected_type_str)
def test_wrong_order(self):
a = torch.ones(25, 300)
b = torch.ones(22, 300)
b_a = rnn_utils.pad_sequence([b, a])
self.assertRaises(
RuntimeError,
lambda: rnn_utils.pack_padded_sequence(b_a, [22, 25], enforce_sorted=True))
def test_pad_sequence_with_tensor_sequences(self):
seq_tuple_input = torch.nn.utils.rnn.pad_sequence(
(torch.tensor([[7, 6]]), torch.tensor([[-7, -1]]))
)
seq_tensor_input = torch.nn.utils.rnn.pad_sequence(
torch.tensor([[[7, 6]], [[-7, -1]]])
)
self.assertEqual(seq_tuple_input, seq_tensor_input)
self.assertEqual(seq_tuple_input.shape, torch.Size([1, 2, 2]))
def test_pad_sequence_with_non_iterable_sequences(self):
msg = r"Expected iterable for input sequences, but got arg of type"
with self.assertRaisesRegex(RuntimeError, msg):
torch.nn.utils.rnn.pad_sequence(5)
def test_total_length(self):
padded, lengths = self._padded_sequence(torch.FloatTensor)
max_length = max(lengths)
packed = rnn_utils.pack_padded_sequence(padded, lengths)
# test ValueError if total_length < max_length
for total_length in (-1, 0, max_length - 1):
for batch_first in (True, False):
def err_fn():
rnn_utils.pad_packed_sequence(packed, batch_first=batch_first,
total_length=total_length)
self.assertRaisesRegex(ValueError,
r'Expected total_length to be at least the '
r'length of the longest sequence in input',
err_fn)
# test that pad_packed_sequence returns results of correct length
for batch_first in (True, False):
no_extra_pad, _ = rnn_utils.pad_packed_sequence(packed, batch_first=batch_first)
for total_length_delta in (0, 1, 8):
total_length = max_length + total_length_delta
unpacked, lengths_out = rnn_utils.pad_packed_sequence(packed, batch_first=batch_first,
total_length=total_length)
self.assertEqual(lengths, lengths_out)
self.assertEqual(unpacked.size(1 if batch_first else 0), total_length)
if total_length_delta == 0:
ref_output = no_extra_pad
elif batch_first:
extra_pad = no_extra_pad.new_zeros(self.batch_size, total_length_delta)
ref_output = torch.cat([no_extra_pad, extra_pad], 1)
else:
extra_pad = no_extra_pad.new_zeros(total_length_delta, self.batch_size)
ref_output = torch.cat([no_extra_pad, extra_pad], 0)
self.assertEqual(unpacked, ref_output)
def test_to(self):
for enforce_sorted in (True, False):
padded, lengths = self._padded_sequence(torch.IntTensor)
a = rnn_utils.pack_padded_sequence(
padded, lengths, enforce_sorted=enforce_sorted).cpu()
self.assertIs(a, a.to('cpu'))
self.assertIs(a, a.cpu())
self.assertIs(a, a.to('cpu', dtype=torch.int32))
self.assertEqual(a.long(), a.to(torch.int64))
if torch.cuda.is_available():
for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']:
b = a.cuda(device=cuda)
self.assertIs(b, b.to(cuda))
self.assertIs(b, b.cuda())
self.assertEqual(a, b.to('cpu'))
self.assertEqual(b, a.to(cuda))
self.assertEqual(a, b.to('cpu', dtype=torch.int32))
self.assertIs(b, b.to(dtype=torch.int32))
self.assertEqual(b.long(), b.to(dtype=torch.int64))
def test_to_memory_format(self):
m = torch.nn.Conv2d(in_channels=16, out_channels=32, kernel_size=2, bias=True)
m = m.to(memory_format=torch.channels_last)
for param in m.parameters():
if param.dim() == 4:
self.assertTrue(param.is_contiguous(memory_format=torch.channels_last))
def test_pad_sequence(self):
def pad(tensor, length):
return torch.cat(
[tensor.data, tensor.data.new(
length - tensor.size(0), *tensor.size()[1:]).zero_()])
# single dimensional
a = torch.tensor([1, 2, 3])
b = torch.tensor([4, 5])
c = torch.tensor([6])
# batch_first = true
expected = torch.tensor([[4, 5, 0], [1, 2, 3], [6, 0, 0]])
padded = rnn_utils.pad_sequence([b, a, c], True)
self.assertEqual(padded, expected)
# batch_first = false
padded = rnn_utils.pad_sequence([b, a, c])
self.assertEqual(padded, expected.transpose(0, 1))
# pad with non-zero value
expected = torch.tensor([[4, 5, 1], [1, 2, 3], [6, 1, 1]])
padded = rnn_utils.pad_sequence([b, a, c], True, 1)
self.assertEqual(padded, expected)
# Test pad sorted sequence
expected = torch.tensor([[1, 2, 3], [4, 5, 0], [6, 0, 0]])
padded = rnn_utils.pad_sequence([a, b, c], True)
self.assertEqual(padded, expected)
# more dimensions
maxlen = 9
for num_dim in (0, 1, 2, 3):
sequences = []
trailing_dims = [4] * num_dim
for i in range(1, maxlen + 1):
seq_len = i * i
sequences.append(torch.rand(seq_len, 5, *trailing_dims))
random.shuffle(sequences)
expected = []
for seq in sequences:
expected.append(pad(seq, maxlen * maxlen))
# batch first = true
expected = torch.stack(expected)
padded = rnn_utils.pad_sequence(sequences, True)
self.assertEqual(padded, expected)
# batch first = false
padded = rnn_utils.pad_sequence(sequences)
self.assertEqual(padded, expected.transpose(0, 1))
def test_unpad_sequence(self):
# single dimensional
a = torch.tensor([1, 2, 3])
b = torch.tensor([4, 5])
c = torch.tensor([6])
sequences = [a, b, c]
lengths = torch.as_tensor([v.size(0) for v in sequences])
for batch_first in [True, False]:
padded_sequences = rnn_utils.pad_sequence(sequences, batch_first=batch_first)
unpadded_sequences = rnn_utils.unpad_sequence(padded_sequences, lengths, batch_first=batch_first)
self.assertEqual(sequences, unpadded_sequences)
# more dimensions
maxlen = 9
for num_dim in (0, 1, 2, 3):
sequences = []
trailing_dims = [4] * num_dim
for i in range(1, maxlen + 1):
seq_len = i * i
sequences.append(torch.rand(seq_len, 5, *trailing_dims))
random.shuffle(sequences)
lengths = torch.as_tensor([v.size(0) for v in sequences])
padded_sequences = rnn_utils.pad_sequence(sequences, batch_first=batch_first)
unpadded_sequences = rnn_utils.unpad_sequence(padded_sequences, lengths, batch_first=batch_first)
self.assertEqual(sequences, unpadded_sequences)
def test_pack_sequence(self):
def _compatibility_test(sequences, lengths, batch_first, enforce_sorted=False):
padded = rnn_utils.pad_sequence(sequences, batch_first)
packed = rnn_utils.pack_sequence(sequences, enforce_sorted)
unpacked = rnn_utils.pad_packed_sequence(packed, batch_first)
self.assertEqual(padded, unpacked[0])
pack_padded = rnn_utils.pack_padded_sequence(
padded, lengths, batch_first, enforce_sorted)
self.assertEqual(packed, pack_padded)
# single dimensional
a = torch.tensor([1, 2, 3])
b = torch.tensor([4, 5])
c = torch.tensor([6])
packed = rnn_utils.pack_sequence([a, b, c], enforce_sorted=False)
expected = torch.tensor([1, 4, 6, 2, 5, 3])
self.assertEqual(packed.batch_sizes, [3, 2, 1])
self.assertEqual(packed.data.data, expected)
self.assertEqual(packed.sorted_indices, [0, 1, 2])
self.assertEqual(packed.unsorted_indices, [0, 1, 2])
packed_unsorted = rnn_utils.pack_sequence([b, c, a], enforce_sorted=False)
self.assertEqual(packed_unsorted.batch_sizes, [3, 2, 1])
self.assertEqual(packed_unsorted.data.data, expected)
self.assertEqual(packed_unsorted.sorted_indices, [2, 0, 1])
self.assertEqual(packed_unsorted.unsorted_indices, [1, 2, 0])
# single dimensional, enforce_sorted = True
packed_enforce_sorted = rnn_utils.pack_sequence([a, b, c], enforce_sorted=True)
self.assertEqual(packed_enforce_sorted.batch_sizes, [3, 2, 1])
self.assertEqual(packed_enforce_sorted.data.data, expected)
self.assertTrue(packed_enforce_sorted.sorted_indices is None)
self.assertTrue(packed_enforce_sorted.unsorted_indices is None)
with self.assertRaisesRegex(RuntimeError, 'must be sorted in decreasing order'):
rnn_utils.pack_sequence([b, c, a], enforce_sorted=True)
with self.assertRaisesRegex(RuntimeError, 'You can pass `enforce_sorted=False`'):
rnn_utils.pack_sequence([b, c, a], enforce_sorted=True)
# more dimensions
maxlen = 9
for num_dim in (0, 1, 2, 3):
sequences = []
lengths = []
trailing_dims = [4] * num_dim
for i in range(maxlen, 0, -1):
seq_len = i * i
lengths.append(seq_len)
sequences.append(torch.rand(seq_len, 5, *trailing_dims))
unsorted_sequences = [s.clone() for s in sequences]
random.shuffle(unsorted_sequences)
unsorted_sequences_lengths = [t.size(0) for t in unsorted_sequences]
# compatibility with other utilities
for batch_first in (True, False):
for enforce_sorted in (True, False):
_compatibility_test(sequences, lengths, batch_first, enforce_sorted)
_compatibility_test(unsorted_sequences, unsorted_sequences_lengths,
batch_first)
def test_unpack_sequence(self):
# single dimensional
a = torch.tensor([1, 2, 3])
b = torch.tensor([4, 5])
c = torch.tensor([6])
sequences = [a, b, c]
packed_sequences = rnn_utils.pack_sequence(sequences, enforce_sorted=False)
unpacked_sequences = rnn_utils.unpack_sequence(packed_sequences)
self.assertEqual(sequences, unpacked_sequences)
# more dimensions
maxlen = 9
for num_dim in (0, 1, 2, 3):
sequences = []
trailing_dims = [4] * num_dim
for i in range(1, maxlen + 1):
seq_len = i * i
sequences.append(torch.rand(seq_len, 5, *trailing_dims))
random.shuffle(sequences)
packed_sequences = rnn_utils.pack_sequence(sequences, enforce_sorted=False)
unpacked_sequences = rnn_utils.unpack_sequence(packed_sequences)
self.assertEqual(sequences, unpacked_sequences)
def test_pack_padded_sequence(self):
def generate_test_case(sorted_lengths, should_shuffle):
def pad(tensor, length):
return torch.cat([tensor, tensor.new(length - tensor.size(0), *tensor.size()[1:]).zero_()])
max_length = sorted_lengths[0]
batch_sizes = [sum(map(bool, filter(lambda x: x >= i, sorted_lengths)))
for i in range(1, max_length + 1)]
offset = 0
padded = torch.cat([pad(i * 100 + torch.arange(1., 5 * l + 1).view(l, 1, 5), max_length)
for i, l in enumerate(sorted_lengths, 1)], 1)
expected_data = [[torch.arange(1., 6) + (i + 1) * 100 + 5 * n for i in range(batch_size)]
for n, batch_size in enumerate(batch_sizes)]
expected_data = list(itertools.chain.from_iterable(expected_data))
expected_data = torch.stack(expected_data, dim=0)
if should_shuffle:
# Shuffle the padded sequence to create an unsorted sequence
permutation = list(range(len(sorted_lengths)))
random.shuffle(permutation)
unsorted_indices = torch.tensor(permutation)
padded = padded.index_select(1, unsorted_indices)
lengths = torch.tensor(sorted_lengths).index_select(0, unsorted_indices)
else:
unsorted_indices = None
lengths = sorted_lengths
return padded.requires_grad_(), lengths, expected_data, batch_sizes, unsorted_indices
test_cases = [
# sorted_lengths, should_shuffle
[[10, 8, 4, 2, 2, 2, 1], False],
[[11, 10, 8, 6, 4, 3, 1], False],
[[11, 10, 8, 6, 4, 3, 1], True],
]
for test_case, batch_first in itertools.product(test_cases, (True, False)):
sorted_lengths, should_shuffle = test_case
padded, lengths, expected_data, batch_sizes, unsorted_indices = generate_test_case(
sorted_lengths, should_shuffle)
src = padded
if batch_first:
src = src.transpose(0, 1)
# check output
packed = rnn_utils.pack_padded_sequence(src, lengths, batch_first=batch_first,
enforce_sorted=not should_shuffle)
self.assertEqual(packed.data.data, expected_data)
self.assertEqual(packed.batch_sizes, batch_sizes)
self.assertEqual(packed.unsorted_indices, unsorted_indices)
# test inverse
unpacked, unpacked_len = rnn_utils.pad_packed_sequence(packed, batch_first=batch_first)
self.assertEqual(unpacked, src)
self.assertEqual(unpacked_len, lengths)
# check grad
if padded.grad is not None:
padded.grad.data.zero_()
grad_output = unpacked.data.clone().normal_()
unpacked.backward(grad_output)
if batch_first:
grad_output.transpose_(0, 1)
for i, l in enumerate(lengths):
self.assertEqual(padded.grad.data[:l, i], grad_output[:l, i])
if l < 10:
self.assertEqual(padded.grad.data[l:, i].abs().sum(), 0)
# test error messages
with self.assertRaisesRegex(RuntimeError, 'You can pass `enforce_sorted=False`'):
packed = rnn_utils.pack_padded_sequence(torch.randn(3, 3), [1, 3, 2])
with self.assertRaisesRegex(RuntimeError, 'empty tensor'):
packed = rnn_utils.pack_padded_sequence(torch.randn(0, 0), [])
if __name__ == '__main__':
run_tests()
|