File: test_packed_sequence.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (392 lines) | stat: -rw-r--r-- 17,764 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
# Owner(s): ["module: nn"]

import itertools
import random

import torch
from torch.testing._internal.common_utils import TestCase, run_tests
import torch.nn.utils.rnn as rnn_utils


class PackedSequenceTest(TestCase):

    _type_by_name = {
        'torch.DoubleTensor': (torch.DoubleTensor, 'double'),
        'torch.FloatTensor': (torch.FloatTensor, 'float'),
        # We leave out `'torch.HalfTensor': (torch.HalfTensor, 'half'),`
        # because of an error in `pad_packed_sequence`
        # > AttributeError: 'torch.HalfTensor' object has no attribute 'fill_'
        'torch.LongTensor': (torch.LongTensor, 'long'),
        'torch.IntTensor': (torch.IntTensor, 'int'),
        'torch.ShortTensor': (torch.ShortTensor, 'short'),
        'torch.CharTensor': (torch.CharTensor, 'char'),
        'torch.ByteTensor': (torch.ByteTensor, 'byte'),
    }

    def __init__(self, *args, **kwargs):
        super(PackedSequenceTest, self).__init__(*args, **kwargs)
        self.batch_size = 5
        self.max_length = 6

    def _ordered_sequence(self, tensor_type):
        """Create ordered list of random sequences"""
        seqs = [tensor_type(random.randint(1, self.max_length))
                for _ in range(self.batch_size)]
        if tensor_type == torch.ByteTensor:
            seqs = [s.random_(0, 256) for s in seqs]
        else:
            seqs = [s.random_(-128, 128) for s in seqs]
        ordered = sorted(seqs, key=len, reverse=True)
        return ordered

    def _padded_sequence(self, tensor_type):
        """Create Tensor of random padded sequences"""
        ordered = self._ordered_sequence(tensor_type)
        lengths = [len(i) for i in ordered]
        padded_tensor = rnn_utils.pad_sequence(ordered)
        return padded_tensor, lengths

    def test_type_casts(self):
        """Test type casting of `PackedSequence` against type casting of tensor"""
        for _, (input_type, _) in self._type_by_name.items():
            for expected_type_str, (_, cast_str) in self._type_by_name.items():
                for enforce_sorted in [True, False]:
                    padded, lengths = self._padded_sequence(input_type)
                    packed = rnn_utils.pack_padded_sequence(
                        padded, lengths, enforce_sorted=enforce_sorted)
                    # Apply cast to `PackedSequence` instance and unpack
                    masked = getattr(packed, cast_str)()
                    unpacked, lengths_out = rnn_utils.pad_packed_sequence(masked)
                    self.assertEqual(unpacked.type(), expected_type_str)

    def test_wrong_order(self):
        a = torch.ones(25, 300)
        b = torch.ones(22, 300)
        b_a = rnn_utils.pad_sequence([b, a])
        self.assertRaises(
            RuntimeError,
            lambda: rnn_utils.pack_padded_sequence(b_a, [22, 25], enforce_sorted=True))

    def test_pad_sequence_with_tensor_sequences(self):
        seq_tuple_input = torch.nn.utils.rnn.pad_sequence(
            (torch.tensor([[7, 6]]), torch.tensor([[-7, -1]]))
        )
        seq_tensor_input = torch.nn.utils.rnn.pad_sequence(
            torch.tensor([[[7, 6]], [[-7, -1]]])
        )
        self.assertEqual(seq_tuple_input, seq_tensor_input)
        self.assertEqual(seq_tuple_input.shape, torch.Size([1, 2, 2]))

    def test_pad_sequence_with_non_iterable_sequences(self):
        msg = r"Expected iterable for input sequences, but got arg of type"
        with self.assertRaisesRegex(RuntimeError, msg):
            torch.nn.utils.rnn.pad_sequence(5)

    def test_total_length(self):
        padded, lengths = self._padded_sequence(torch.FloatTensor)
        max_length = max(lengths)
        packed = rnn_utils.pack_padded_sequence(padded, lengths)
        # test ValueError if total_length < max_length
        for total_length in (-1, 0, max_length - 1):
            for batch_first in (True, False):
                def err_fn():
                    rnn_utils.pad_packed_sequence(packed, batch_first=batch_first,
                                                  total_length=total_length)
            self.assertRaisesRegex(ValueError,
                                   r'Expected total_length to be at least the '
                                   r'length of the longest sequence in input',
                                   err_fn)
        # test that pad_packed_sequence returns results of correct length
        for batch_first in (True, False):
            no_extra_pad, _ = rnn_utils.pad_packed_sequence(packed, batch_first=batch_first)
            for total_length_delta in (0, 1, 8):
                total_length = max_length + total_length_delta
                unpacked, lengths_out = rnn_utils.pad_packed_sequence(packed, batch_first=batch_first,
                                                                      total_length=total_length)
                self.assertEqual(lengths, lengths_out)
                self.assertEqual(unpacked.size(1 if batch_first else 0), total_length)
                if total_length_delta == 0:
                    ref_output = no_extra_pad
                elif batch_first:
                    extra_pad = no_extra_pad.new_zeros(self.batch_size, total_length_delta)
                    ref_output = torch.cat([no_extra_pad, extra_pad], 1)
                else:
                    extra_pad = no_extra_pad.new_zeros(total_length_delta, self.batch_size)
                    ref_output = torch.cat([no_extra_pad, extra_pad], 0)
                self.assertEqual(unpacked, ref_output)

    def test_to(self):
        for enforce_sorted in (True, False):
            padded, lengths = self._padded_sequence(torch.IntTensor)
            a = rnn_utils.pack_padded_sequence(
                padded, lengths, enforce_sorted=enforce_sorted).cpu()

            self.assertIs(a, a.to('cpu'))
            self.assertIs(a, a.cpu())
            self.assertIs(a, a.to('cpu', dtype=torch.int32))
            self.assertEqual(a.long(), a.to(torch.int64))

            if torch.cuda.is_available():
                for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']:
                    b = a.cuda(device=cuda)
                    self.assertIs(b, b.to(cuda))
                    self.assertIs(b, b.cuda())
                    self.assertEqual(a, b.to('cpu'))
                    self.assertEqual(b, a.to(cuda))
                    self.assertEqual(a, b.to('cpu', dtype=torch.int32))
                    self.assertIs(b, b.to(dtype=torch.int32))
                    self.assertEqual(b.long(), b.to(dtype=torch.int64))

    def test_to_memory_format(self):
        m = torch.nn.Conv2d(in_channels=16, out_channels=32, kernel_size=2, bias=True)
        m = m.to(memory_format=torch.channels_last)
        for param in m.parameters():
            if param.dim() == 4:
                self.assertTrue(param.is_contiguous(memory_format=torch.channels_last))

    def test_pad_sequence(self):
        def pad(tensor, length):
            return torch.cat(
                [tensor.data, tensor.data.new(
                    length - tensor.size(0), *tensor.size()[1:]).zero_()])

        # single dimensional
        a = torch.tensor([1, 2, 3])
        b = torch.tensor([4, 5])
        c = torch.tensor([6])

        # batch_first = true
        expected = torch.tensor([[4, 5, 0], [1, 2, 3], [6, 0, 0]])
        padded = rnn_utils.pad_sequence([b, a, c], True)
        self.assertEqual(padded, expected)

        # batch_first = false
        padded = rnn_utils.pad_sequence([b, a, c])
        self.assertEqual(padded, expected.transpose(0, 1))

        # pad with non-zero value
        expected = torch.tensor([[4, 5, 1], [1, 2, 3], [6, 1, 1]])
        padded = rnn_utils.pad_sequence([b, a, c], True, 1)
        self.assertEqual(padded, expected)

        # Test pad sorted sequence
        expected = torch.tensor([[1, 2, 3], [4, 5, 0], [6, 0, 0]])
        padded = rnn_utils.pad_sequence([a, b, c], True)
        self.assertEqual(padded, expected)

        # more dimensions
        maxlen = 9
        for num_dim in (0, 1, 2, 3):
            sequences = []
            trailing_dims = [4] * num_dim
            for i in range(1, maxlen + 1):
                seq_len = i * i
                sequences.append(torch.rand(seq_len, 5, *trailing_dims))
            random.shuffle(sequences)
            expected = []
            for seq in sequences:
                expected.append(pad(seq, maxlen * maxlen))
            # batch first = true
            expected = torch.stack(expected)
            padded = rnn_utils.pad_sequence(sequences, True)
            self.assertEqual(padded, expected)

            # batch first = false
            padded = rnn_utils.pad_sequence(sequences)
            self.assertEqual(padded, expected.transpose(0, 1))

    def test_unpad_sequence(self):

        # single dimensional
        a = torch.tensor([1, 2, 3])
        b = torch.tensor([4, 5])
        c = torch.tensor([6])
        sequences = [a, b, c]

        lengths = torch.as_tensor([v.size(0) for v in sequences])
        for batch_first in [True, False]:
            padded_sequences = rnn_utils.pad_sequence(sequences, batch_first=batch_first)
            unpadded_sequences = rnn_utils.unpad_sequence(padded_sequences, lengths, batch_first=batch_first)
            self.assertEqual(sequences, unpadded_sequences)

        # more dimensions
        maxlen = 9
        for num_dim in (0, 1, 2, 3):
            sequences = []
            trailing_dims = [4] * num_dim
            for i in range(1, maxlen + 1):
                seq_len = i * i
                sequences.append(torch.rand(seq_len, 5, *trailing_dims))
            random.shuffle(sequences)

            lengths = torch.as_tensor([v.size(0) for v in sequences])
            padded_sequences = rnn_utils.pad_sequence(sequences, batch_first=batch_first)
            unpadded_sequences = rnn_utils.unpad_sequence(padded_sequences, lengths, batch_first=batch_first)
            self.assertEqual(sequences, unpadded_sequences)

    def test_pack_sequence(self):
        def _compatibility_test(sequences, lengths, batch_first, enforce_sorted=False):
            padded = rnn_utils.pad_sequence(sequences, batch_first)
            packed = rnn_utils.pack_sequence(sequences, enforce_sorted)
            unpacked = rnn_utils.pad_packed_sequence(packed, batch_first)
            self.assertEqual(padded, unpacked[0])
            pack_padded = rnn_utils.pack_padded_sequence(
                padded, lengths, batch_first, enforce_sorted)
            self.assertEqual(packed, pack_padded)

        # single dimensional
        a = torch.tensor([1, 2, 3])
        b = torch.tensor([4, 5])
        c = torch.tensor([6])
        packed = rnn_utils.pack_sequence([a, b, c], enforce_sorted=False)
        expected = torch.tensor([1, 4, 6, 2, 5, 3])
        self.assertEqual(packed.batch_sizes, [3, 2, 1])
        self.assertEqual(packed.data.data, expected)
        self.assertEqual(packed.sorted_indices, [0, 1, 2])
        self.assertEqual(packed.unsorted_indices, [0, 1, 2])

        packed_unsorted = rnn_utils.pack_sequence([b, c, a], enforce_sorted=False)
        self.assertEqual(packed_unsorted.batch_sizes, [3, 2, 1])
        self.assertEqual(packed_unsorted.data.data, expected)
        self.assertEqual(packed_unsorted.sorted_indices, [2, 0, 1])
        self.assertEqual(packed_unsorted.unsorted_indices, [1, 2, 0])

        # single dimensional, enforce_sorted = True
        packed_enforce_sorted = rnn_utils.pack_sequence([a, b, c], enforce_sorted=True)
        self.assertEqual(packed_enforce_sorted.batch_sizes, [3, 2, 1])
        self.assertEqual(packed_enforce_sorted.data.data, expected)
        self.assertTrue(packed_enforce_sorted.sorted_indices is None)
        self.assertTrue(packed_enforce_sorted.unsorted_indices is None)

        with self.assertRaisesRegex(RuntimeError, 'must be sorted in decreasing order'):
            rnn_utils.pack_sequence([b, c, a], enforce_sorted=True)

        with self.assertRaisesRegex(RuntimeError, 'You can pass `enforce_sorted=False`'):
            rnn_utils.pack_sequence([b, c, a], enforce_sorted=True)

        # more dimensions
        maxlen = 9
        for num_dim in (0, 1, 2, 3):
            sequences = []
            lengths = []
            trailing_dims = [4] * num_dim
            for i in range(maxlen, 0, -1):
                seq_len = i * i
                lengths.append(seq_len)
                sequences.append(torch.rand(seq_len, 5, *trailing_dims))
            unsorted_sequences = [s.clone() for s in sequences]
            random.shuffle(unsorted_sequences)
            unsorted_sequences_lengths = [t.size(0) for t in unsorted_sequences]

            # compatibility with other utilities
            for batch_first in (True, False):
                for enforce_sorted in (True, False):
                    _compatibility_test(sequences, lengths, batch_first, enforce_sorted)
                _compatibility_test(unsorted_sequences, unsorted_sequences_lengths,
                                    batch_first)

    def test_unpack_sequence(self):

        # single dimensional
        a = torch.tensor([1, 2, 3])
        b = torch.tensor([4, 5])
        c = torch.tensor([6])
        sequences = [a, b, c]

        packed_sequences = rnn_utils.pack_sequence(sequences, enforce_sorted=False)
        unpacked_sequences = rnn_utils.unpack_sequence(packed_sequences)
        self.assertEqual(sequences, unpacked_sequences)

        # more dimensions
        maxlen = 9
        for num_dim in (0, 1, 2, 3):
            sequences = []
            trailing_dims = [4] * num_dim
            for i in range(1, maxlen + 1):
                seq_len = i * i
                sequences.append(torch.rand(seq_len, 5, *trailing_dims))
            random.shuffle(sequences)

            packed_sequences = rnn_utils.pack_sequence(sequences, enforce_sorted=False)
            unpacked_sequences = rnn_utils.unpack_sequence(packed_sequences)
            self.assertEqual(sequences, unpacked_sequences)

    def test_pack_padded_sequence(self):
        def generate_test_case(sorted_lengths, should_shuffle):
            def pad(tensor, length):
                return torch.cat([tensor, tensor.new(length - tensor.size(0), *tensor.size()[1:]).zero_()])

            max_length = sorted_lengths[0]
            batch_sizes = [sum(map(bool, filter(lambda x: x >= i, sorted_lengths)))
                           for i in range(1, max_length + 1)]
            offset = 0
            padded = torch.cat([pad(i * 100 + torch.arange(1., 5 * l + 1).view(l, 1, 5), max_length)
                                for i, l in enumerate(sorted_lengths, 1)], 1)
            expected_data = [[torch.arange(1., 6) + (i + 1) * 100 + 5 * n for i in range(batch_size)]
                             for n, batch_size in enumerate(batch_sizes)]
            expected_data = list(itertools.chain.from_iterable(expected_data))
            expected_data = torch.stack(expected_data, dim=0)

            if should_shuffle:
                # Shuffle the padded sequence to create an unsorted sequence
                permutation = list(range(len(sorted_lengths)))
                random.shuffle(permutation)

                unsorted_indices = torch.tensor(permutation)
                padded = padded.index_select(1, unsorted_indices)
                lengths = torch.tensor(sorted_lengths).index_select(0, unsorted_indices)
            else:
                unsorted_indices = None
                lengths = sorted_lengths

            return padded.requires_grad_(), lengths, expected_data, batch_sizes, unsorted_indices

        test_cases = [
            # sorted_lengths, should_shuffle
            [[10, 8, 4, 2, 2, 2, 1], False],
            [[11, 10, 8, 6, 4, 3, 1], False],
            [[11, 10, 8, 6, 4, 3, 1], True],
        ]

        for test_case, batch_first in itertools.product(test_cases, (True, False)):
            sorted_lengths, should_shuffle = test_case
            padded, lengths, expected_data, batch_sizes, unsorted_indices = generate_test_case(
                sorted_lengths, should_shuffle)

            src = padded
            if batch_first:
                src = src.transpose(0, 1)

            # check output
            packed = rnn_utils.pack_padded_sequence(src, lengths, batch_first=batch_first,
                                                    enforce_sorted=not should_shuffle)
            self.assertEqual(packed.data.data, expected_data)
            self.assertEqual(packed.batch_sizes, batch_sizes)
            self.assertEqual(packed.unsorted_indices, unsorted_indices)

            # test inverse
            unpacked, unpacked_len = rnn_utils.pad_packed_sequence(packed, batch_first=batch_first)
            self.assertEqual(unpacked, src)
            self.assertEqual(unpacked_len, lengths)

            # check grad
            if padded.grad is not None:
                padded.grad.data.zero_()
            grad_output = unpacked.data.clone().normal_()
            unpacked.backward(grad_output)
            if batch_first:
                grad_output.transpose_(0, 1)
            for i, l in enumerate(lengths):
                self.assertEqual(padded.grad.data[:l, i], grad_output[:l, i])
                if l < 10:
                    self.assertEqual(padded.grad.data[l:, i].abs().sum(), 0)

        # test error messages
        with self.assertRaisesRegex(RuntimeError, 'You can pass `enforce_sorted=False`'):
            packed = rnn_utils.pack_padded_sequence(torch.randn(3, 3), [1, 3, 2])
        with self.assertRaisesRegex(RuntimeError, 'empty tensor'):
            packed = rnn_utils.pack_padded_sequence(torch.randn(0, 0), [])


if __name__ == '__main__':
    run_tests()