1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
ir_version: 7
producer_name: "pytorch"
producer_version: "CURRENT_VERSION"
graph {
node {
input: "emb.weight"
input: "input_1"
output: "onnx::Add_3"
name: "ATen_0"
op_type: "ATen"
attribute {
name: "custom_attributes_json"
s: "{\"padding_idx\":-1,\"scale_grad_by_freq\":false,\"sparse\":false}"
type: STRING
}
attribute {
name: "operator"
s: "embedding"
type: STRING
}
attribute {
name: "overload_name"
s: ""
type: STRING
}
domain: "org.pytorch.aten"
}
node {
input: "onnx::Add_3"
input: "input_2"
output: "onnx::Shape_4"
name: "Add_1"
op_type: "Add"
}
node {
input: "onnx::Shape_4"
output: "onnx::Gather_5"
name: "Shape_2"
op_type: "Shape"
}
node {
output: "onnx::Gather_6"
name: "Constant_3"
op_type: "Constant"
attribute {
name: "value"
t {
data_type: 7
raw_data: "\000\000\000\000\000\000\000\000"
}
type: TENSOR
}
}
node {
input: "onnx::Gather_5"
input: "onnx::Gather_6"
output: "onnx::Unsqueeze_7"
name: "Gather_4"
op_type: "Gather"
attribute {
name: "axis"
i: 0
type: INT
}
}
node {
input: "onnx::Unsqueeze_7"
output: "onnx::Concat_8"
name: "Unsqueeze_5"
op_type: "Unsqueeze"
attribute {
name: "axes"
ints: 0
type: INTS
}
}
node {
input: "onnx::Concat_8"
output: "onnx::ConstantOfShape_9"
name: "Concat_6"
op_type: "Concat"
attribute {
name: "axis"
i: 0
type: INT
}
}
node {
input: "onnx::ConstantOfShape_9"
output: "10"
name: "ConstantOfShape_7"
op_type: "ConstantOfShape"
attribute {
name: "value"
t {
dims: 1
data_type: 1
raw_data: "\000\000\200?"
}
type: TENSOR
}
}
name: "torch_jit"
initializer {
dims: 4
dims: 8
data_type: 1
name: "emb.weight"
raw_data: "\264\314\344\275\017A\376\276\313\374&>J\266a\277s\306\\=\212\032+?\211[t\275\344[\357\276Dk\\\276OKb?\234\'B\277A\334\274\2767N\257\276\320s\263\277\371+\244>:\314\202\277K\200L??\001\275\275\236u4\2774\032\315\277\214\004\224>Z\320\372>\267B\305\276\346G6\277N\265.\276\343\316\272\277t\364a>\201)|>p\223\251\277Qm2?\346\275)\277\354\235\233?"
}
input {
name: "input_1"
type {
tensor_type {
elem_type: 7
shape {
dim {
dim_param: "input_1_dim_0"
}
}
}
}
}
input {
name: "input_2"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_param: "input_2_dim_0"
}
dim {
dim_param: "input_2_dim_1"
}
}
}
}
}
output {
name: "10"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_param: "ConstantOfShape10_dim_0"
}
}
}
}
}
}
opset_import {
version: 12
}
opset_import {
domain: "org.pytorch.aten"
version: 1
}
|