1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
|
ir_version: 7
producer_name: "pytorch"
producer_version: "CURRENT_VERSION"
graph {
node {
output: "onnx::Pad_1"
name: "Constant_0"
op_type: "Constant"
attribute {
name: "value"
t {
dims: 8
data_type: 7
raw_data: "\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000\000"
}
type: TENSOR
}
}
node {
input: "onnx::Pad_0"
input: "onnx::Pad_1"
output: "onnx::AveragePool_2"
name: "Pad_1"
op_type: "Pad"
attribute {
name: "mode"
s: "constant"
type: STRING
}
}
node {
input: "onnx::AveragePool_2"
output: "3"
name: "AveragePool_2"
op_type: "AveragePool"
attribute {
name: "ceil_mode"
i: 0
type: INT
}
attribute {
name: "kernel_shape"
ints: 3
ints: 3
type: INTS
}
attribute {
name: "pads"
ints: 0
ints: 0
ints: 0
ints: 0
type: INTS
}
attribute {
name: "strides"
ints: 2
ints: 2
type: INTS
}
}
name: "torch_jit"
input {
name: "onnx::Pad_0"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 20
}
dim {
dim_value: 16
}
dim {
dim_value: 50
}
dim {
dim_value: 32
}
}
}
}
}
output {
name: "3"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 20
}
dim {
dim_value: 16
}
dim {
dim_value: 24
}
dim {
dim_value: 15
}
}
}
}
}
}
opset_import {
version: 14
}
|