1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
ir_version: 7
producer_name: "pytorch"
producer_version: "CURRENT_VERSION"
graph {
node {
input: "input"
input: "weight"
input: "bias"
input: "running_mean"
input: "running_var"
output: "6"
name: "BatchNormalization_0"
op_type: "BatchNormalization"
attribute {
name: "epsilon"
f: 1e-05
type: FLOAT
}
attribute {
name: "momentum"
f: 0.9
type: FLOAT
}
attribute {
name: "training_mode"
i: 0
type: INT
}
}
name: "torch_jit"
initializer {
dims: 2
data_type: 1
name: "weight"
raw_data: "\000\000\200?\000\000\200?"
}
initializer {
dims: 2
data_type: 1
name: "bias"
raw_data: "\000\000\000\000\000\000\000\000"
}
initializer {
dims: 2
data_type: 1
name: "running_mean"
raw_data: "\000\000\000\000\000\000\000\000"
}
initializer {
dims: 2
data_type: 1
name: "running_var"
raw_data: "\000\000\200?\000\000\200?"
}
input {
name: "input"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
dim {
dim_value: 2
}
}
}
}
}
input {
name: "weight"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
}
}
}
}
input {
name: "bias"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
}
}
}
}
input {
name: "running_mean"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
}
}
}
}
input {
name: "running_var"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
}
}
}
}
output {
name: "6"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 2
}
dim {
dim_value: 2
}
}
}
}
}
}
opset_import {
version: 14
}
|