1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
|
ir_version: 7
producer_name: "pytorch"
producer_version: "CURRENT_VERSION"
graph {
node {
input: "onnx::Gemm_0"
input: "weight"
input: "bias"
output: "3"
name: "Gemm_0"
op_type: "Gemm"
attribute {
name: "alpha"
f: 1
type: FLOAT
}
attribute {
name: "beta"
f: 1
type: FLOAT
}
attribute {
name: "transB"
i: 1
type: INT
}
}
name: "torch_jit"
initializer {
dims: 5
dims: 4
data_type: 1
name: "weight"
raw_data: "\212\332\356>@\265u>p\303E\275 \320\306\274\354\201\221>\004\354\261\276\2746*>8\247)\276\340\035\224>\024\2446\276\200\211\312<\224\344,>D\356\257>\320\202\226\275\364\213\351>z\226\330\276\310\250\266\275\352F\377\276\000\250)=\244K\021>"
}
initializer {
dims: 5
data_type: 1
name: "bias"
raw_data: "\324BO\276@\245T>\350\377\245\275\374u\336\276&\212\304>"
}
input {
name: "onnx::Gemm_0"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 3
}
dim {
dim_value: 4
}
}
}
}
}
input {
name: "weight"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 5
}
dim {
dim_value: 4
}
}
}
}
}
input {
name: "bias"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 5
}
}
}
}
}
output {
name: "3"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_value: 3
}
dim {
dim_value: 5
}
}
}
}
}
}
opset_import {
version: 14
}
|