File: TestOperators.test_maxpool_indices.expect

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (169 lines) | stat: -rw-r--r-- 2,802 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
ir_version: 7
producer_name: "pytorch"
producer_version: "CURRENT_VERSION"
graph {
  node {
    input: "onnx::MaxPool_0"
    output: "1"
    output: "onnx::Sub_2"
    name: "MaxPool_0"
    op_type: "MaxPool"
    attribute {
      name: "ceil_mode"
      i: 0
      type: INT
    }
    attribute {
      name: "kernel_shape"
      ints: 3
      type: INTS
    }
    attribute {
      name: "pads"
      ints: 0
      ints: 0
      type: INTS
    }
    attribute {
      name: "strides"
      ints: 2
      type: INTS
    }
  }
  node {
    input: "onnx::MaxPool_0"
    output: "3"
    output: "onnx::Slice_4"
    name: "MaxPool_1"
    op_type: "MaxPool"
    attribute {
      name: "kernel_shape"
      ints: 1
      type: INTS
    }
    attribute {
      name: "strides"
      ints: 1
      type: INTS
    }
  }
  node {
    output: "onnx::Slice_5"
    name: "Constant_2"
    op_type: "Constant"
    attribute {
      name: "value"
      t {
        dims: 1
        data_type: 7
        raw_data: "\002\000\000\000\000\000\000\000"
      }
      type: TENSOR
    }
  }
  node {
    output: "onnx::Slice_6"
    name: "Constant_3"
    op_type: "Constant"
    attribute {
      name: "value"
      t {
        dims: 1
        data_type: 7
        raw_data: "\000\000\000\000\000\000\000\000"
      }
      type: TENSOR
    }
  }
  node {
    output: "onnx::Slice_7"
    name: "Constant_4"
    op_type: "Constant"
    attribute {
      name: "value"
      t {
        dims: 1
        data_type: 7
        raw_data: "\001\000\000\000\000\000\000\000"
      }
      type: TENSOR
    }
  }
  node {
    input: "onnx::Slice_4"
    input: "onnx::Slice_6"
    input: "onnx::Slice_7"
    input: "onnx::Slice_5"
    output: "onnx::Sub_8"
    name: "Slice_5"
    op_type: "Slice"
  }
  node {
    input: "onnx::Sub_2"
    input: "onnx::Sub_8"
    output: "9"
    name: "Sub_6"
    op_type: "Sub"
  }
  name: "torch_jit"
  input {
    name: "onnx::MaxPool_0"
    type {
      tensor_type {
        elem_type: 1
        shape {
          dim {
            dim_value: 20
          }
          dim {
            dim_value: 16
          }
          dim {
            dim_value: 50
          }
        }
      }
    }
  }
  output {
    name: "1"
    type {
      tensor_type {
        elem_type: 1
        shape {
          dim {
            dim_value: 20
          }
          dim {
            dim_value: 16
          }
          dim {
            dim_value: 24
          }
        }
      }
    }
  }
  output {
    name: "9"
    type {
      tensor_type {
        elem_type: 7
        shape {
          dim {
            dim_value: 20
          }
          dim {
            dim_value: 16
          }
          dim {
            dim_value: 24
          }
        }
      }
    }
  }
}
opset_import {
  version: 14
}